1. 概述
检索增强生成(Retrieval-Augmented Generation,RAG)(Gao et al. 2024;Zhu et al. 2021)是一种典型的降低大语言模型(Large Language Models,LLMs)(Zhang et al. 2023)幻觉问题的方法,通过从外部语料库中检索和参考相关文件来实现。然而,尽管其效果显著,但大多数 RAG 研究忽视了一个关键问题:外部语料库中的虚假信息污染(Pan et al. 2023b;Dufour et al. 2024)。恶意生成的虚假信息可能误导 LLMs 生成不符合事实的回应。例如,微软的 Bing 可能被互联网上的虚假信息误导,为 Bing 用户生成错误信息(Vincent 2023)。此外,Pan 等(2023b)和 Pan 等(2023a)表明,将 LLMs 生成的虚假信息插入 RAG 语料库会显著降低 LLMs 的性能。因此,解决 RAG 中的虚假信息污染问题至关重要。
一个简单而常见的解决方法是虚假信息检测和过滤。大量虚假信息检测研究关注于衡量文件的可信度,即文件不包含虚假信息的概率(Kaliyar,Goswami 和 Narang 2021;Pelline et al. 2023;Quelle 和 Bovet 2024;Li et al. 2024)。一旦我们获得了检索到的每个文件的可信度,就可以在 RAG 使用前排除那些低于特定阈值的文件。然而,直接丢弃某些文件可能导致相关信息的丢失,从而导致性能