Learning without training:The implicit dynamics of in-context learning

Learning without training: The implicit dynamics of in-context learninghttps://arxiv.org/pdf/2507.16003

1. 概述

        大型语言模型和transformer架构[1]已经彻底改变了机器学习领域,并将在许多工业、科学和艺术领域产生类似的影响。尽管影响广泛,但LLM(大型语言模型)如何获得使其如此有用的新兴属性的机制在很大程度上仍然是一个理论谜团[2]。在这项工作中,我们关注LLM在上下文中学习的能力[3][4],在训练完全完成后,从训练期间未见过的例子中学习,但通过提示提供给训练过的系统。历史上,在机器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值