opencv项目实战
文章平均质量分 80
踏入 OpenCV 项目实战的精彩世界!本专栏聚焦于通过一个个实际项目,带你深度掌握 OpenCV 技术。从基础操作到复杂应用,在实战中积累经验,助你快速成长为 OpenCV 应用高手,轻松应对各种图像与视频处理难题。
樱花的浪漫
梦想还是要有的,更要成为一名不懈追求梦想的人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OpenCV项目实战-答题卡识别判卷
随着教育信息化的推进,传统的人工批改答题卡的工作量大、效率低,且容易出错。为了提高批改效率并减少人为错误,基于计算机视觉的自动化判卷系统逐渐成为一种重要的解决方案。该系统能够通过扫描答题卡图像,自动识别学生的选择题答案,并根据正确答案计算得分。本项目实现了一个基于OpenCV的答题卡判卷系统。通过图像处理技术,自动检测答题卡中的选项区域,识别答案并与预设的正确答案进行对比,从而实现自动判卷。:通过对输入图像进行预处理(灰度化、模糊处理、边缘检测等),为后续的轮廓检测和透视变换做准备。原创 2025-01-20 18:55:26 · 200 阅读 · 0 评论 -
OpenCV实战-停车场车位识别
为了提高停车场空间的利用率并为车主提供实时停车位信息,自动化的停车场管理系统成为了一种有效的解决方案。基于计算机视觉的车位检测技术能够通过监控摄像头对停车场进行实时监控,并通过图像处理和机器学习技术,自动识别空闲和占用的车位。本项目的目标是实现一个基于OpenCV和深度学习模型的停车场车位检测系统,能够从停车场的监控图像或视频中自动检测出每个停车位,并通过卷积神经网络(CNN)对每个车位的状态进行预测(空闲或占用)。:通过霍夫变换算法检测停车场中的车道线和车位边界,帮助确定停车位的具体位置。原创 2025-01-18 15:31:05 · 495 阅读 · 0 评论 -
OpenCV实战-全景图像拼接
随着计算机视觉技术的不断发展,图像拼接技术已被广泛应用于虚拟现实、地图生成、全景摄影等领域。图像拼接(ImageStitching)旨在将多张部分重叠的图像无缝拼接成一幅完整的全景图像。此任务要求图像处理系统能够从不同角度获取的图像中识别出匹配的特征点,并通过计算视角变换将它们对齐。本项目实现了一个基于OpenCV的图像拼接算法,使用SIFT特征提取和RANSAC算法来估计图像之间的变换矩阵,进而拼接多个图像生成全景图像。该技术可用于大规模图像拼接、三维建模以及图像增强等应用场景。原创 2025-01-17 22:05:30 · 450 阅读 · 0 评论 -
OpenCV实战——文档扫描OCR识别
在信息化时代,文档图像的数字化处理成为了一个重要的需求。尤其是在文档扫描、票据识别、身份证识别等应用中,能够从图像中快速准确地提取文本信息是提升工作效率的关键。光学字符识别(OCR)技术已经广泛应用于此类场景,结合适当的图像预处理,可以大大提高OCR的识别准确度。本项目旨在通过图像处理和OCR技术,实现对扫描文档图像中的文本进行自动识别,提取出文档中的内容。:读取扫描后的图像并将其转化为灰度图像,为后续的文本识别做准备。通过图像预处理(如二值化和模糊),清晰化图像中的文本,使得OCR识别更加准确。原创 2025-01-17 00:02:46 · 870 阅读 · 0 评论 -
openCV项目实战——信用卡数字识别
然后应用二值化和形态学操作增强图像中的字符和数字区域,使其适合后续的轮廓提取和数字识别。本项目通过图像处理技术,特别是模板匹配与轮廓提取的结合,完成信用卡数字的定位与识别。:利用手工或已有的模板图像(数字的标准样式),通过模板匹配识别数字。:将识别出的数字区域绘制到原图上,并显示或输出完整的信用卡号。方法找出图像中的轮廓,并根据轮廓的几何特征(长宽比、尺寸等)筛选出可能包含信用卡数字的区域。:提取数字区域,进行二值化和轮廓检测,按从左到右的顺序排序数字。:使用模板匹配方法识别数字,选择与模板最匹配的数字。原创 2025-01-16 10:30:11 · 766 阅读 · 0 评论
分享