【Java数据结构】排序算法详解

目录

1. 直接插入排序

2. 希尔排序

3. 直接选择排序

4. ⭐堆排序

5. 冒泡排序

6. ⭐⭐快速排序

快速排序的优化

♥使用栈优化

7. ⭐归并排序

♥合并两个有序数组(补充)


如何判断一个排序的稳定性?

在排序前和前序后,两个相同的数字如果没有发生前后的交换,则认为是稳定的排序。

测试排序花费时间的方法:

import java.util.Random;//生成随机数

//生成随机数,存入array数组
Random random = new Random();
for (int i = 0; i < array.length; i++) {
    array[i] = random.nextInt(100);
}
long start = System.currentTimeMillis();    //记录排序开始时间
xxxSort(array);    //调用排序方法
long end = System.currentTimeMillis();    //记录排序结束时间
System.out.println(end - start);    //打印开始结束的相差时间(排序花费的时间)

排序方法的分类

插入排序:直接插入排序、希尔排序

选择排序:选择排序、堆排序

交换排序:冒泡排序、快速排序

归并排序:归并排序

--------------------------------------------

1. 直接插入排序

特点:越有序越快

时间复杂度:

  • 最好情况:O(N)
  • 最坏情况(逆序):O(N^2)
  • 平均情况:O(N^2)

空间复杂度:O(1)

稳定性:稳定的排序

实现思路:两层循环,一个 i 从1开始往后走,定义 tmp 存储 array [ i ]的值用于比较

                定义循环 j 为i-1,往前走,一个一个进行对比

import java.util.Arrays;
public class TestSort {
    //直接插入排序
    public static void insertSort(int[] array) {
        if (array == null || array.length <= 1) return;
        for (int i = 1; i < array.length; i++) {
            int tmp = array[i];
            int j = i - 1;
            for (; j >= 0 ; j--) {
                if (array[j] > tmp) {
                    array[j+1] = array[j];
                } else {
                    break;
                }
            }
            array[j+1] = tmp;
        }
    }
    public static void main(String[] args) {
        int[] array = {6,2,1,7,5};
        System.out.println(Arrays.toString(array));
        insertSort(array);
        System.out.println(Arrays.toString(array));
    }
}

2. 希尔排序

希尔排序是直接插入排序的一个优化

特点:分组(缩小增量法)进行直接插入排序

时间复杂度:O(N^1.3-1.5)

空间复杂度:O(1)

稳定性:不稳定

import java.util.Arrays;
public class TestSort {
    //希尔排序
    public static void shell(int[] array, int gap) {
        if (array == null || array.length <= 1) return;
        for (int i = gap; i < array.length; i++) {
            int tmp = array[i];
            int j = i - gap;
            for (; j >= 0; j -= gap) {
                if (array[j] > tmp) {
                    array[j + gap] = array[j];
                } else {
                    break;
                }
            }
            array[j+gap] = tmp;
        }
    }
    //定义每次排序的gap
    public static void shellSort(int[] array) {
        int gap = array.length-1;
        while (gap > 1) {
            gap = gap/2;
            //gap = (gap / 3) + 1;
            shell(array,gap);
        }
        shell(array,1);
    }
    public static void main(String[] args) {
        int[] array = {6,2,1,7,5};
        System.out.println(Arrays.toString(array));
        shellSort(array);
        System.out.println(Arrays.toString(array));
    }
}

3. 直接选择排序

 i 从零下标走到 小于 array.length-1的位置,用 j 依次比较大小进行交换。

特点:可以优化,记录下当前i下标之后,最小值的下标才交换

时间复杂度:O(N^2)

空间复杂度:O(1)

稳定性:不稳定的排序

public class test {
    //直接选择排序
    public static void selectSort(int[] array) {
        if (array == null) return;
        for (int i = 0; i < array.length; i++) {
            for (int j = i+1; j < array.length ; j++) {
                if (array[j] < array[i]) {
                    int tmp = array[j];
                    array[j] =array[i];
                    array[i] = tmp;
                }
            }
        }
    }
    //小优化版
    public static void selectSort2(int[] array) {
        if (array == null) return;
        for (int i = 0; i < array.length; i++) {
            int min =  i;
            for (int j = i+1; j < array.length ; j++) {
                if (array[min] > array[j]) {
                    min = j;
                }
            }
            if (min != i) {
                int tmp = array[i];
                array[i] = array[min];
                array[min] = tmp;
            }
        }
    }

    public static void main(String[] args) {
        int[] array = {1,6,8,9,4,5};
        System.out.println(Arrays.toString(array));
        selectSort(array);
        System.out.println(Arrays.toString(array));
    }
}

4. ⭐堆排序

特点:1.先建大根堆2.堆中排序(向下调整)

时间复杂度:O(N*logn)

空间复杂度:O(1)

稳定性:不稳定

public class test {
    //堆排序
    //1.创建大根堆,时间复杂度O(N)
    public static void createBigHeap(int[] array) {
        for (int i = (array.length-1-1)/2; i >= 0 ; i--) {
            shiftDown(array, i, array.length);
        }
    }
    //2.调用向下调整,时间复杂度O(logn)
    public static void shiftDown (int[] array, int parent, int len) {
        int child = 2*parent+1;
        while (child < len) {
            if (child+1 < len && array[child] < array[child+1]) {
                child++;
            }
            //到这儿说明child下标就是左右孩子最大值的下标
            if (array[child] > array[parent]) {
                int tmp = array[child];
                array[child] = array[parent];
                array[parent] = tmp;
            } else {
                break;
            }
        }
    }
    //3.在堆中排序
    public static void heapSort(int[] array) {
        createBigHeap(array);   //先把数组变成大根堆,时间复杂度O(N)
        int end = array.length-1;
        while (end > 0) {    //时间复杂度O(N)
            int tmp = array[0];
            array[0] =array[end];
            array[end] = tmp;
            shiftDown(array,0,end);    // *时间复杂度O(logn)
            end--;
        }
    }
    public static void main(String[] args) {
        int[] array = {1,6,8,9,4,5};
        System.out.println(Arrays.toString(array));
        heapSort(array);
        System.out.println(Arrays.toString(array));
    }
}

5. 冒泡排序

特点:可以使用 flg 标志进行优化

时间复杂度:O(N^2)        当数据本身有序且优化情况下为:O(N)

空间复杂度:O(1)

稳定性:稳定的排序

public class test {
    //冒泡排序
    public static void bubbleSort(int[] array) {
        //趟数
        for (int i = 0; i < array.length-1; i++) {
            //设置标志,判断是否发生了交换
            boolean flg = false;
            for (int j = 0; j < array.length-i-1; j++) {
                if (array[j] > array[j+1]) {
                    int tmp = array[j];
                    array[j] = array[j+1];
                    array[j+1] = tmp;
                    //如果这一趟发生了交换则标志为true
                    flg = true;
                }
            }
            //如果发现没交换,说明数组有序
            if (flg == false) {
                break;
            }
        }
    }
    public static void main(String[] args) {
        int[] array = {1,6,8,9,4,5};
        System.out.println(Arrays.toString(array));
        bubbleSort(array);
        System.out.println(Arrays.toString(array));
    }
}

6. ⭐⭐快速排序

特点:缺点:在数组有序的情况下时间复杂度最大为O(N^2),空间复杂度O(N)

时间复杂度:O(N*logn)        //logn层的二叉树递归

空间复杂度:O(logn)         //和二叉树的高度有关

稳定性:不稳定的排序

import java.util.Arrays;
public class test {
    //快速排序
    //返回标定结点
    public static int partition(int[] array, int start, int end) {
        int tmp = array[start];
        while (start < end) {
            //先判断后面
            while (start < end && array[end] >= tmp) {
                end--;
            }
            //后面的给start
            array[start] = array[end];
            //再判断前面
            while (start < end && array[start] <= tmp) {
                start++;
            }
            //把大的给end
            array[end] = array[start];
        }
        array[start] = tmp;
        return start;
    }

    //快速排序主函数
    public static void quickSort(int[] array) {
        quick(array,0,array.length-1);
    }
    //递归调用左右
    public static void quick(int[] array, int left, int right) {
        //left >= right 表明当前结束
        if (left >= right) {
            return;
        }
        int pivot = partition(array,left,right);
        quick(array, left,pivot-1);
        quick(array,pivot+1,right);
    }

    public static void main(String[] args) {
        int[] array = {1,6,8,9,4,5};
        System.out.println(Arrays.toString(array));
        quickSort(array);
        System.out.println(Arrays.toString(array));
    }
}

快速排序的优化

随机选择法、三数取中法优化、和直接插入排序结合

    //递归调用左右
    public static void quick(int[] array, int left, int right) {
        //left >= right 表明当前结束
        if (left >= right) {
            return;
        }
        //【优化】1.随机选择基准,先将left下标的值交换
        //rand 交换array[left]  array[rand]
        //Random random = new Random();
        //int rand = random.nextInt(right-left)+left+1;
        //swap(array,left,rand)
        
        //【优化】2.三数中取中法
        medianOfThree(array,left,right);

        //【优化】3.递归执行到一个区间之后,使用直接插入排序
        //if ((right - left +1) <= 100) {
        //    insertSort2(array,left,right);
        //    return;
        //}
        int pivot = partition(array,left,right);
        quick(array, left,pivot-1);
        quick(array,pivot+1,right);
    }
    //三数取中(快排的优化)
    public static void medianOfThree(int[] array,int left, int right) {
        int mid = (left+right)/2;
        if (array[mid] > array[left]) {
            int tmp = array[mid];
            array[mid] = array[left];
            array[left] = tmp;
        }//array[mid] <= array[left]
        if (array[left] > array[right]) {
            int tmp = array[left];
            array[left] = array[right];
            array[right] = tmp;
        }//array[left] <= array[right]
        if (array[mid] > array[right]) {
            int tmp = array[right];
            array[right] = array[mid];
            array[mid] = tmp;
        }
    }

♥使用栈优化

import java.util.*;
public class test {
    //使用栈优化快排
    public static void quickSort(int[] array) {
        Stack<Integer> stack = new Stack<>();
        int start = 0;
        int end = array.length-1;
        int pivot = partition(array,start,end);
        if (pivot > start+1) {
            stack.push(start);
            stack.push(pivot-1);
        }
        if (pivot < end-1) {
            stack.push(pivot+1);
            stack.push(end);
        }
        while (!stack.empty()) {
            end = stack.pop();
            start = stack.pop();
            pivot = partition(array,start,end);
            if (pivot > start+1) {
                stack.push(start);
                stack.push(pivot-1);
            }
            if (pivot < end-1) {
                stack.push(pivot+1);
                stack.push(end);
            }
        }
    }
    public static int partition(int[] array, int start, int end) {
        int tmp = array[start];
        while (start < end) {
            //先判断后面
            while (start < end && array[end] >= tmp) {
                end--;
            }
            //后面的给start
            array[start] = array[end];
            //再判断前面
            while (start < end && array[start] <= tmp) {
                start++;
            }
            //把大的给end
            array[end] = array[start];
        }
        array[start] = tmp;
        return start;
    }
    public static void main(String[] args) {
        int[] array = {1,6,8,9,4,5};
        System.out.println(Arrays.toString(array));
        quickSort(array);
        System.out.println(Arrays.toString(array));
    }
}

7. ⭐归并排序

特点:先分解 -> 再合并

时间复杂度:O(N*logn)

空间复杂度:O(N)

稳定性:稳定的排序

import java.util.*;
public class test {
    //归并排序
    public static void merge(int[] array, int left, int right, int mid) {
        int[] tmp = new int[right-left+1];
        int k = 0;
        int s1 = left;
        int e1 = mid;
        int s2 = mid+1;
        int e2 = right;

        while (s1 <= e1 && s2 <= e2) {
            if (array[s1] <= array[s2]) {
                tmp[k++] = array[s1++];
            } else {
                tmp[k++] = array[s2++];
            }
        }
        while (s1 <= e1) {
            tmp[k++] = array[s1++];
        }
        while (s2 <= e2) {
            tmp[k++] = array[s2++];
        }
        //排好序的数组放到原数组的顺序
        for (int i = 0; i < k; i++) {
            array[i+left] = tmp[i];
        }
    }

    public static void mergeSortInternal(int[] array, int left, int right) {
        if (left >= right) return;
        int mid = (left+right)/2;
        mergeSortInternal(array,left,mid);
        mergeSortInternal(array,mid+1,right);
        merge(array,left,right,mid);
    }

    public static void mergeSort(int[] array) {
        mergeSortInternal(array,0, array.length-1);
    }

    public static void main(String[] args) {
        int[] array = {6,2,1,6,5,0,-1};
        System.out.println(Arrays.toString(array));
        mergeSort(array);
        System.out.println(Arrays.toString(array));
    }
}

非递归方式实现归并排序

public class test {
    //非递归方式实现归并排序
    public static void mergeSort(int[] array) {
        for (int gap = 1; gap < array.length; gap *= 2) {
            merge(array,gap);
        }
    }
    public static void merge(int[] array,int gap) {
        int[] tmp = new int[array.length];
        int k = 0;

        int s1 = 0;
        int e1 = s1+gap-1;
        int s2 = e1+1;
        int e2 = s2+gap-1 >= array.length ? array.length-1 : s2+gap-1;
        //一定要有两个段
        while (s2 < array.length) {
            while (s1 <= e1 && s2 <= e2) {
                if (array[s1] <= array[s2]) {
                    tmp[k++] = array[s1++];
                }else {
                    tmp[k++] = array[s2++];
                }
            }
            while (s1 <= e1) {
                tmp[k++] = array[s1++];
            }
            while (s2 <= e2) {
                tmp[k++] = array[s2++];
            }
            s1 = e2 + 1;
            e1 = s1+gap-1;
            s2 = e1+1;
            e2 = s2+gap-1 >= array.length ? array.length-1 : s2+gap-1;
        }

        while (s1 <= array.length-1) {
            tmp[k++] = array[s1++];
        }
        for (int i = 0; i < k; i++) {
            array[i] = tmp[i];
        }
    }
    public static void main(String[] args) {
        int[] array = {6,2,1,6,5,0,-1};
        System.out.println(Arrays.toString(array));
        mergeSort(array);
        System.out.println(Arrays.toString(array));
    }
}

♥合并两个有序数组(补充)

import java.util.*;
public class test {
    //非递归方式实现归并排序
    public static void mergeSort(int[] array) {
        for (int gap = 1; gap < array.length; gap *= 2) {
            merge(array,gap);
        }
    }
    public static void merge(int[] array,int gap) {
        int[] tmp = new int[array.length];
        int k = 0;

        int s1 = 0;
        int e1 = s1+gap-1;
        int s2 = e1+1;
        int e2 = s2+gap-1 >= array.length ? array.length-1 : s2+gap-1;
        //一定要有两个段,拿s2判断,用s2至少有一个数据
        while (s2 < array.length) {
            while (s1 <= e1 && s2 <= e2) {
                if (array[s1] <= array[s2]) {
                    tmp[k++] = array[s1++];
                }else {
                    tmp[k++] = array[s2++];
                }
            }
            while (s1 <= e1) {
                tmp[k++] = array[s1++];
            }
            while (s2 <= e2) {
                tmp[k++] = array[s2++];
            }
            s1 = e2 + 1;
            e1 = s1+gap-1;
            s2 = e1+1;
            e2 = s2+gap-1 >= array.length ? array.length-1 : s2+gap-1;
        }
        //只剩下第一个段了
        while (s1 <= array.length-1) {
            tmp[k++] = array[s1++];
        }
        for (int i = 0; i < k; i++) {
            array[i] = tmp[i];
        }
    }
    public static void main(String[] args) {
        int[] array = {6,2,1,6,5,0,-1};
        System.out.println(Arrays.toString(array));
        mergeSort(array);
        System.out.println(Arrays.toString(array));
    }
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值