封面
加载数据
1.pytorch加载数据
Pytorch中加载数据需要Dataset、Dataloader:
Dataset提供一种方式去获取每个数据及其对应的label,告诉我们总共有多少个数据。
Dataloader为后面的网络提供不同的数据形式,它将一批一批数据进行一个打包。
2.常用的两种数据集形式
-
常用的第一种数据形式,文件夹的名称是它的label。
-
常用的第二种形式,lebel为文本格式,文本名称为图片名称,文本中的内容为对应的label。
3.用路径直接加载数据
from PIL import Image
img_path = "Data/FirstTypeData/train/ants/0013035.jpg"
img = Image.open(img_path)
img.show()
4.dataset加载数据
from torch.utils.data import Dataset
from PIL import Image
import os
class MyData(Dataset):
def __init__(self,root_dir,label_dir): # 该魔术方法当创建一个事例对象时,会自动调用该函数
self.root_dir = root_dir # self.root_dir 相当于类中的全局变量
self.label_dir = label_dir
self.path = os.path.join(self.root_dir,self.label_dir) # 字符串拼接,根据是Windows或Lixus系统情况进行拼接
self.img_path = os.listdir(self.path) # 获得路径下所有图片的地址
def __getitem__(self,idx):
img_name = self.img_path[idx]
img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
img = Image.open(img_item_path)
label = self.label_dir
return img, label
def __len__(self):
return len(self.img_path)
root_dir = "Data/FirstTypeData/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)
print(len(ants_dataset))
print(len(bees_dataset))
train_dataset = ants_dataset + bees_dataset # train_dataset 就是两个数据集的集合了
print(len(train_dataset))
img,label = train_dataset[200]
print("label:",label)
img.show()
tensorboard使用
1.Tensorbosrd的用途
Tensorboad 可以用来查看loss是否按照我们预想的变化,或者查看训练到某一步输出的图像是什么样。
2.Tensorboard写日志
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs") # 创建一个logs文件夹,writer写的文件都在该文件夹下
#writer.add_image()
for i in range(100):
writer.add_scalar("y=2x",2*i,i)
writer.close()
3.tensorboard读日志
在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。
为避免多人使用端口导致冲突,也可以在后面加上后缀,使得端口独立,tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs --port=6008
输入网址可得Tens