
人工智能
文章平均质量分 93
昊昊该干饭了
CSDN博客专家,专注数据采集与开发、人工智能等领域,积累上千小时一线编码与性能调优经验;畅销书作者,著有《ChatGPT商业应用实操手册》、《DeepSeek 行业应用大全》等,以实战视角将技术转化为通俗可用的方法论。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
漫谈深度伪造(Deepfake)技术
近年来,深度伪造(Deepfake)技术迅猛发展,以惊人的真实度重构人物语言与影像,广泛应用于娱乐、广告乃至政治传播,但也频繁伴随诈骗、隐私泄露与名誉毁损。该技术依赖于人工智能中的生成模型,通过深度学习重构目标人物面部图像与音频,形成以假乱真的视频内容。本质上,Deepfake 是以图像/音频生成算法为内核,在 GAN(生成对抗网络)等基础模型的支持下,通过大规模数据训练模型“模仿”目标对象。由于生成内容的真实性日益提高,普通人难以肉眼识别真伪,其潜在风险日益凸显,尤其在个人隐私、安全、舆论操控、金融欺原创 2025-07-07 11:17:29 · 1675 阅读 · 0 评论 -
大模型原理、架构与落地
近年来,大模型(Large Language Models,LLMs)在人工智能领域迅猛发展,从GPT-3到GPT-4、Claude、Gemini、文心一言、GLM等模型相继发布,大模型已逐渐走出实验室,迈向产业落地。本文将从技术原理、模型架构、训练技巧、推理优化到实际应用进行系统剖析,帮助读者深入掌握大模型相关知识,全面提升AI实战能力。原创 2025-06-10 16:45:05 · 981 阅读 · 0 评论 -
零基础起步:基于GpuGeek的文本生成模型实战
在自然语言处理(NLP)领域,文本生成任务广泛应用于问答系统、智能摘要、内容创作等方向。本文将带领读者使用GpuGeek平台,从注册、上传数据到实例部署与训练,完整构建一个基于GPT2模型的文本生成系统,实战掌握AI模型的云端开发流程。原创 2025-05-14 12:04:05 · 9595 阅读 · 55 评论 -
基于GpuGeek平台的深度学习项目
在深度学习项目的开发过程中,计算资源的选择对模型训练效率和成本控制至关重要。本文将以图像分类项目为例,详细解析如何利用GpuGeek平台的高性价比GPU资源和丰富的镜像市场,完成从数据预处理到模型部署的全流程,帮助读者高效推进深度学习项目。原创 2025-05-14 11:44:42 · 9721 阅读 · 57 评论 -
拆解 Prompt 工程:五大场景驱动 DeepSeek 超越 ChatGPT
同样的模型、不一样的答案,差距往往发生在一行 Prompt 里。本文围绕五大高频实战场景,给出可直接复制的 DeepSeek 提问框架,并穿插《DeepSeek 行业应用大全》中 66 个行业模板精华,帮助读者迅速跑赢 ChatGPT。🌟原创 2025-05-07 17:02:21 · 1665 阅读 · 0 评论 -
DeepSeek 入门:从注册到首轮对话全流程
DeepSeek 作为定位「国民级 AI」的大语言模型,正试图让中文人工智能能力触手可及。很多读者第一次打开网页却卡在注册、提示词或插件配置细节。本篇将以全流程拆解方式,帮助大家十分钟上手并完成首轮高质量对话,为后续深度应用打下基础。文末有重磅推荐!!!原创 2025-05-07 16:43:53 · 1139 阅读 · 0 评论 -
原理剖析 + 实战教程 + 资源优化总结大模型微调实战:LoRA / QLoRA / PEFT 全解析,教你低成本玩转大模型微调
随着大语言模型(LLM)在自然语言处理各领域取得突破性进展,越来越多开发者和企业开始关注模型的微调方式。然而,全参数微调不仅成本高昂、资源要求极高,还容易引发过拟合与知识遗忘等问题。为此,LoRA、QLoRA、PEFT 等轻量级微调技术迅速崛起,成为大模型落地实践的热门选择。原创 2025-04-10 13:24:02 · 1798 阅读 · 4 评论 -
1.5万字彻底讲透Transformer:从Attention原理到大模型训练实战
Transformer是现代深度学习的核心架构之一,广泛应用于自然语言处理、计算机视觉等领域。本文将从Attention原理讲起,逐步拆解Transformer架构,结合BERT、GPT等主流模型,通过实战示例讲透大模型训练的完整流程。原创 2025-03-28 10:29:03 · 1826 阅读 · 0 评论 -
提升机器学习模型速度与精度的十大策略
本文围绕机器学习性能瓶颈,详细介绍了提升模型速度与精度的十大策略,从硬件到算法,从训练到部署,覆盖性能优化的各个层面。读者可以根据实际场景选择合适策略,通过实验和调试不断优化,提升模型的实际应用效果。原创 2025-01-15 14:59:05 · 3600 阅读 · 0 评论 -
从0到1搭建推荐系统 -- 数据驱动的算法与架构设计(带数据集)
推荐系统是现代信息技术的重要应用,能够帮助用户从海量数据中找到感兴趣的内容,广泛应用于电商、流媒体、社交媒体等领域。本文将从基本概念、数据处理、算法设计、系统架构到模型评估的角度,深入解析如何从零构建一个推荐系统。原创 2025-01-15 14:23:53 · 2123 阅读 · 0 评论 -
2.5万字 - 用TensorFlow和PyTorch分别实现五种经典模型
在深度学习领域,TensorFlow和PyTorch是两大广泛使用的框架,各有其独特的特性和优势。随着人工智能技术的快速发展,越来越多的开发者需要熟练掌握这两种工具,以便在实际项目中选择适合的框架进行高效开发。原创 2024-12-31 18:05:13 · 1925 阅读 · 0 评论 -
Sora 发布!
如果说从文本到文本的问答模式,ChatGPT为我们带来了丰富的信息交互,那么Sora从文本到视频的输入输出,几乎可以用“创造”来形容。它不仅仅是一个生成模型,更是一个将抽象概念转化为具体影像的工具,开创了AI视觉创作的新纪元。它不再是一个简单的生成图像或文本的工具,而是一个能够理解并模拟物理世界的“创造引擎”。今天,它来了!原创 2024-12-11 11:14:03 · 694 阅读 · 0 评论 -
解锁 AI 潜能 - ChatGPT等大模型提示词技巧
在人工智能领域,ChatGPT 等大语言模型正在重新定义我们的工作和生活方式。这些强大的 AI 大模型 能够理解自然语言并生成高质量的内容,无论是撰写文案、解决问题,还是数据分析,都展现了卓越的表现。如何高效使用这些工具,发挥它们的最大潜能?本文将带你全面了解 ChatGPT 的核心能力及实用技巧,帮助你在 AI 大模型时代占得先机!原创 2024-12-07 17:30:26 · 2049 阅读 · 3 评论 -
用 ChatGPT 彻底颠覆工作与学习方式
在人工智能快速发展的时代,ChatGPT 已不再只是一个聊天工具。它正在成为一种颠覆工作与学习方式的生产力神器。从高效处理日常任务到定制化学习体验,ChatGPT 的潜力无处不在。本文将深度解析 ChatGPT 的功能,展示它如何在职场和学习中释放你的潜能,让 AI 成为你的超强助手。原创 2024-12-07 16:37:00 · 972 阅读 · 0 评论 -
机器学习算法的核心理论小总结
机器学习算法的核心在于利用数据构建模型以解决实际问题,而理解其理论基础是高效应用的关键。本文从机器学习的基本概念出发,详细解析监督学习中的几种经典算法,如逻辑回归、决策树和支持向量机(SVM)。同时,我们将结合Python代码,展示这些算法如何在实际任务中应用。原创 2024-12-06 17:29:45 · 966 阅读 · 1 评论 -
从零开始学习构建自己的机器学习模型 - 带垃圾短信识别实战
垃圾短信分类是现代通信安全中不可忽视的问题,通过使用Python和机器学习技术,我们可以快速构建一个高效的垃圾短信分类模型。从数据加载到文本特征提取。本文将深入探讨如何使用逻辑回归等机器学习算法,通过简单易懂的代码示例,完成垃圾短信的高效分类。原创 2024-12-06 17:13:15 · 1252 阅读 · 0 评论 -
AI 辅助研发趋势 - 动动嘴完成代码?
随着人工智能技术的持续发展与突破,2024年AI辅助研发正成为科技界和工业界瞩目的焦点。从医药研发到汽车设计,从软件开发到材料科学,AI正逐渐渗透到研发的各个环节,变革着传统的研发模式。在这一背景下,AI辅助研发不仅提升了研发效率,降低了成本,更在某种程度上解决了复杂问题,推动了科技进步。2024年,随着AI技术的进一步成熟,AI辅助研发的趋势将更加明显,其潜力也将得到更广泛的挖掘和应用。原创 2024-03-09 11:21:23 · 853 阅读 · 0 评论 -
OpenAI-Sora学习手册
通过Sora看2024红利:文生视频,虽然AI不一定是风口,但一定是未来深入到生活工作,乃至思考的必备工具。原创 2024-03-06 10:31:45 · 1638 阅读 · 0 评论 -
人工智能在日常生活中的应用
在我们的日常生活中,人工智能已经成为一种无处不在的力量,从智能家居到在线助手,再到高度个性化的服务和推荐,它无声地改变着我们的生活方式和习惯。随着技术的不断进步和普及,人工智能正以前所未有的速度和规模渗透到我们生活的每一个角落,开启了一个全新的智能时代。原创 2024-03-05 15:36:17 · 4618 阅读 · 0 评论 -
解读人工智能的理论基石
通过对人工智能理论基础的系统性阐述,本文不仅增进了对该领域核心概念和技术的理解,还为进一步的学术研究和技术创新提供了理论支撑。本文的研究旨在促进跨学科的对话,推动人工智能技术的健康发展和社会应用。原创 2024-02-29 13:42:20 · 1674 阅读 · 0 评论 -
让AI玩一千万次贪吃蛇
如果让人工智能来玩贪吃蛇游戏,会发生什么?原创 2024-02-24 21:04:21 · 1584 阅读 · 0 评论 -
深度学习基础(四)医疗影像分析实战
我们将深入探讨使用深度学习技术在医疗影像分析领域的应用,特别是如何利用深度学习模型来识别和分类医疗图像中的特定特征,如病变区域或异常组织。我们将以一个实际的案例为例,详细介绍从数据准备到模型初步构建的整个过程。原创 2024-02-24 20:42:29 · 4230 阅读 · 0 评论 -
深度学习基础(三)循环神经网络(RNN)
循环神经网络(RNN)是一种专为处理序列数据设计的神经网络。与传统神经网络不同,RNN的节点之间形成了环形连接,使得网络能够保持对先前信息的记忆。这种设计让RNN在每个时间步都能考虑到之前时间步的信息,从而实现对序列数据的有效处理。原创 2024-02-23 17:10:16 · 13685 阅读 · 0 评论 -
深度学习基础(二)卷积神经网络(CNN)
卷积神经网络(CNN)的应用领域广泛,尤其在图像处理方面,CNN已经成为了一种革命性的工具。本章将深入探讨CNN的架构、典型应用案例以及性能分析,旨在为读者提供一个全面的视角,理解CNN在图像处理中的核心作用及其背后的原理。原创 2024-02-23 16:41:37 · 14854 阅读 · 0 评论 -
深度学习基础(一)神经网络基本原理
在如今的科技浪潮中,神经网络作为人工智能的核心技术之一,正日益展现出其强大的能力。从图像识别、语音识别到自然语言处理,神经网络的应用几乎遍布每一个角落。而其背后的原理,源自于对人类大脑极其复杂处理机制的模拟与借鉴。本文将深入浅出地探讨神经网络的基础原理,让我们一起揭开这项神奇技术的面纱。原创 2024-02-22 16:02:25 · 17658 阅读 · 0 评论 -
机器学习基础(六)TensorFlow与PyTorch
对于追求稳定性和可扩展性的生产环境项目,TensorFlow可能更合适;而对于注重灵活性和快速迭代的研究项目,PyTorch可能更优。原创 2024-02-21 16:52:07 · 14094 阅读 · 0 评论 -
机器学习基础(五)监督与非监督学习的结合
将监督学习和非监督学习结合起来,就像将两种不同的艺术形式融合,创造出全新的作品。这种结合利用了两种学习方法的优点,能够处理更复杂的数据集,并提高模型的准确性和泛化能力。原创 2024-02-21 16:34:40 · 14410 阅读 · 0 评论 -
机器学习基础(四)非监督学习的进阶探索
非监督学习像一位探险家,挖掘未标记数据的未知领域。它不依赖预先定义的类别或标签,而是试图揭示数据自身的结构和关系。这种学习方式在处理复杂数据集时尤其有价值,因为它能发现人类可能未曾预见的模式和联系。原创 2024-02-20 13:56:59 · 13945 阅读 · 0 评论 -
机器学习基础(三)监督学习的进阶探索
监督学习作为机器学习的一个主要分支,专注于从带有标签的数据中学习和建立预测模型。这些模型可以预测新数据的标签,广泛应用于各种行业和领域,从简单的邮件分类到复杂的医疗诊断。原创 2024-02-20 11:37:48 · 14257 阅读 · 0 评论 -
机器学习基础(二)监督与非监督学习
更深入地探讨监督学习和非监督学习的知识,重点关注它们的理论基础、常用算法及实际应用场景。原创 2024-02-19 10:36:39 · 14493 阅读 · 1 评论 -
机器学习基础(一)理解机器学习的本质
将在本节深入探索机器学习的根本原理,包括基本概念、分类及如何通过构建预测模型来应用这些理论。原创 2024-02-19 10:05:27 · 14819 阅读 · 0 评论