机器学习之数据预处理——StandardScaler

本文介绍了机器学习中数据预处理的重要性,并通过Python代码展示了如何使用`StandardScaler`进行特征标准化,使得数据的均值为0,方差为1,从而提升模型训练效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



前言

数据预处理是机器学习中常用的处理数据的方法,这样能够让模型的训练速度得到质的提升,本文将为大家展现常用的几种数据预处理方法。

一、手工生成数据

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
X,y=make_blobs(n_samples=40,centers=2,random_state=50,cluster_std=2)
plt.scatter(X[:,0],X[:,1],c=y,cmap=plt.cm.cool)
plt.show()

请添加图片描述
生成的数据集如上

二、使用步骤

1.引入库

from sklearn.preprocessing import StandardScaler

2.对数据进行预处理

from sklearn.preprocessing import StandardScaler
X_1=StandardScaler().fit_transform(X)
plt.scatter(X_1[:,0],X_1[:,1],c=y,cmap=plt.cm.cool)
plt.show()

请添加图片描述

3.结果分析:

对比两个图,你也许会发现数据点的分布情况没有什么不同,但图像的x轴和y轴都发生了变化。现在数据所有的特征1的数值都在-2到3之间,而特征2的数值都在-3到2之间。这是因为,StandardScaler的原理是,将所有数据的特征值转换为均值为0,而方差为1的状态,这样就可以确保数据的‘大小’都是一致的,这样更利于模型的训练。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值