最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。 a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。 求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
今天我们用辗转相除法求最大公约数
辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
import java.util.Scanner;
import java.lang.Math;
public class Exercise11_17 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入俩个数字:");
int a = scanner.nextInt();
int b = scanner.nextInt();
int max = Math.max(a,b); //需要包含Math这个类
int min = Math.min(a,b);
int r = max % min;
while(r != 0){
max = min;//交换除数和被除数
min = r;
r = max % min;
}
}
}
结果展示: