利用Java求最大公约数(辗转相除法)

本文介绍了如何使用辗转相除法,也称为欧几里得算法,来求解两个整数的最大公约数。通过举例展示了计算过程,最终得出最大公约数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。 a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。 求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。

今天我们用辗转相除法求最大公约数

辗转相除法

辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

例如,求(319,377):

∵ 319÷377=0(余319)

∴(319,377)=(377,319);

∵ 377÷319=1(余58)

∴(377,319)=(319,58);

∵ 319÷58=5(余29)

∴ (319,58)=(58,29);

∵ 58÷29=2(余0)

∴ (58,29)= 29;

∴ (319,377)=29。

import java.util.Scanner;
import java.lang.Math;

public class Exercise11_17 {
    public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
        System.out.println("请输入俩个数字:");
        int a = scanner.nextInt();
        int b = scanner.nextInt();
        int max = Math.max(a,b); //需要包含Math这个类
        int min = Math.min(a,b);
        int r = max % min;
        while(r != 0){
            max = min;//交换除数和被除数
            min = r;
            r = max % min;
        }
}
}

结果展示:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值