Anaconda虚拟环境下安装Cuda Cudnn Pytorch
最近想要学习深度学习,python环境使用Anaconda,在安装pytorch过程中有一些困惑,在此记录以便下次安装方便。
1.CUDA、Cudnn、Pytorch关系
下面是看过一些文章后个人的理解,仅供参考。关系中涉及几个概念:CUDA、cudnn、pytorch、GPU、Nvidia Driver。
- GPU:深度学习的程序需要利用GPU来进行计算。
- Nvidia Driver:操作系统与GPU进行交互的程序,一般买来的电脑上就会自带。
- CUDA Toolkit:就是利用conda命令下载下来的CUDA,是基于驱动的程序,用来实现GPU并行计算和加速深度学习的软件包。
- Nvidia官方网站下载的CUDA:包括了驱动和CUDA Toolkit。
- cudnn:是专门针对深度学习的GPU加速库,如果要使用深度学习框架需要安装。CUDA Toolkit中不包含,需要单独下载。
- pytorch或tensorflow:深度学习框架,提供了一些方便的深度学习函数接口。
由于conda环境下安装的是CUDA Toolkit,多CUDA版本在不同的虚拟环境下安装不同的Toolkit版本就好。
详细可参考这篇文章的解释:一张图了解GPU、CUDA、CUDA toolkit和pytorch的关系
2.CUDA、Cudnn、Pytorch安装
CUDA
- 在命令行输入
nvidia-smi
可查看当前驱动支持的最高CUDA版本。而输入nvcc --version
查看当前安装的CUDA的说法。
也可点击Nvidi