Anaconda虚拟环境下安装CUDA Cudnn Pytorch

Anaconda虚拟环境下安装Cuda Cudnn Pytorch


最近想要学习深度学习,python环境使用Anaconda,在安装pytorch过程中有一些困惑,在此记录以便下次安装方便。

1.CUDA、Cudnn、Pytorch关系

下面是看过一些文章后个人的理解,仅供参考。关系中涉及几个概念:CUDA、cudnn、pytorch、GPU、Nvidia Driver。

  • GPU:深度学习的程序需要利用GPU来进行计算。
  • Nvidia Driver:操作系统与GPU进行交互的程序,一般买来的电脑上就会自带。
  • CUDA Toolkit:就是利用conda命令下载下来的CUDA,是基于驱动的程序,用来实现GPU并行计算和加速深度学习的软件包。
  • Nvidia官方网站下载的CUDA:包括了驱动和CUDA Toolkit。
  • cudnn:是专门针对深度学习的GPU加速库,如果要使用深度学习框架需要安装。CUDA Toolkit中不包含,需要单独下载。
  • pytorch或tensorflow:深度学习框架,提供了一些方便的深度学习函数接口。
    由于conda环境下安装的是CUDA Toolkit,多CUDA版本在不同的虚拟环境下安装不同的Toolkit版本就好。
    详细可参考这篇文章的解释:一张图了解GPU、CUDA、CUDA toolkit和pytorch的关系

2.CUDA、Cudnn、Pytorch安装

CUDA

  1. 在命令行输入nvidia-smi可查看当前驱动支持的最高CUDA版本。而输入nvcc --version查看当前安装的CUDA的说法。
    也可点击Nvidi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值