监督学习概述

         监督学习的特点是既有输入,也有结果。

        我们输入的数据是(x,y)这种样本点的模式,x是我们输入的数据量,y是我们想要的结果。通过学习系统得到一个模型,得到一个y和x的函数关系,或者一个条件概率模型,即y在x的前提下发生的概率。

        监督学习(Supervised Learning)算法构建了包括输入和所需输出的一组数据的数学模型。这些数据称为训练数据,由一组训练样本组合。

        监督学习主要包括分类回归。当输出被限制为有限的一组值(离散数值)时使用分类算法;当输出可以具有范围内的任何数值(连续数值)时使用回归算法。

        相似度学习是和回归和分类都密切相关的一类监督机器学习,它的目标是使用相似性函数从样本中学习,这个函数可以度量两个对象之间的相似度或者关联度。它在排名、推荐系统、视觉识别跟踪、人脸识别等方面有着很好的应用场景。

1.监督学习应用举例

        1.1 预测房价或房屋出售情况

 

        我们将所在街区、房屋价格、住房面积、住房格局、是否学区总体当成一个x,是否售出当做一个y输入模型内,再通过模型预测第四套房子是否售出。由于结果只有“是”和“否”这两个答案,因此结果是离散的,我们采用分类算法

        如果我们要预测第四套房子的价格多少时可以售出,那么此时是否售出是“是”,y应该为房屋的价格。房屋的价格是连续的数字,有无穷多个可能,没有固定的数目,因此 不是离散的,我们采用回归算法。

2.监督学习深入介绍

        2.1 监督学习三要素

        模型(model):总结数据的内在规律,用数学函数描述的系统。

        策略(strategy):选取最优模型的评价准则。

        算法(algorithm):选取最优模型的具体方法。

        2.2 监督学习实现步骤

        1.得到一个有限的训练数据集。

        2.确定包含所有学习模型的集合。

        3.确定模型选择的准则,也就是学习策略

        4.实现求解最优模型的算法,也就是学习算法。

        5.通过学习算法选择最优模型。

        6.利用得到的最优模型,对新数据进行预测或分析。

        2.3 模型评估策略

        模型评估:

                - 训练集和测试集

                - 损失函数和经验风险

                - 训练误差和测试误差

        模型选择:

                - 过拟合和欠拟合

              &nbs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值