自动驾驶3D目标检测综述(八)

在介绍完前九章的内容后,咱们已经基本完成了综述主题内容的解读。剩下只有第十章分析和展望以及第十一章总结的部分。本篇为自动驾驶3D目标检测综述的第八篇也将是最后一篇。


目录

1、研究趋势

1.1 数据选择的趋势

1.2 推理时间的趋势

1.3 基于激光雷达方法的趋势

1.4 基于相机方法的趋势

1.5 多模态方法的趋势

1.6 系统比较

2 未来展望

2.1 开放集合三维目标检测

2.2 更强可解释性的检测

2.3 三维目标检测高效硬件设计

2.4 端到端自动驾驶系统检测


第十章 分析和展望

在这个章节中,我们会对三维目标检测方法进行一个系统的对比和分析,并对自动驾驶三维检测展望未来研究方向。在第一节中,我们对各种各样的三维目标检测方法的检测性能和推理速度进行综合性的分析,比如基于激光雷达的、基于相机的、多模态的方法,在我们多年进一步总结研究其趋势的多种数据集上。在第二节,我们提出了在此领域的未来研究方向。

1、研究趋势

我们全面综合性地收集了近几年各类型三维目标检测方法的统计数据。这些统计数据包含了三维目标检测方法在最广泛使用的数据集KITTI、nuScenes和Waymo上的性能和推理时间。下面三张表分别展示了三种数据集上的统计数据。通过分析这些数据,我们得到了三维目标检测研究趋势方面一些有趣的发现。

1.1 数据选择的趋势

在2018年以前,大部分方法都只在KITTI数据集上进行评估,并且他们采用的评估指标是二维的平均精确度(AP_{2D}),他们通过将三维边界框投影到图像平面上再与地面实况二维框进行比较。从2018到现在,越来越多的文章采用三维或BEV平均精度(AP_{3D}AP_{BEV},)这种方法是一种测量三维检测质量更加直接的指标。对于基于激光雷达的方法,基于KITTI数据集上的检测性能多年来迅速收敛,例如简单情况下的AP_{3D}从71.40%增长到90.90%,甚至困难情况下的AP_{3D}达到了79.14%。因此,从2019年起,越来越多的基于激光雷达的方法采用更大和更多种类的数据集,例如nuScenes和Waymo Open数据集。大尺度数据集也提供了更多有效的数据类型,例如由Waymo提供的原始图像促进了基于范围方法的发展。对于基于相机的检测方法,基于KITTI数据集的单目检测的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值