并查集最常用的应用也就是初始化,联合,和寻找代码也很简单:
void init(int n)//初始化,将自己的前驱设为自己
{
for (int i = 1; i <= n; i++)
{
pre[i] = i;//pre[i]表示i的前驱
}
}
int find(int x)//寻找x结点根结点,这里采用了路径压缩算法
{
if (pre[x] == x) return x;
return pre[x] = find(pre[x]);
}
void unit(int x, int y)//将x,y联合为一组
{
int rx = find(x);
int ry = find(y);
if (rx != ry) pre[rx] = ry;//这里谁是是谁的前驱不那么重要
}
下面是一道pta上简单的应用:
题目:
L2-010 排座位 (25 分)
布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。
输入格式:
输入第一行给出3个正整数:N
(≤100),即前来参宴的宾客总人数,则这些人从1到N
编号;M
为已知两两宾客之间的关系数;K
为查询的条数。随后M
行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系
,其中关系
为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K
行,每行给出一对需要查询的宾客编号。
这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。
输出格式:
对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem
;如果他们之间并不是朋友,但也不敌对,则输出OK
;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...
;如果他们之间只有敌对关系,则输出No way
。
输入样例:
7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2
输出样例:
No problem
OK
OK but...
No way
代码:
思路在注释上已经也的很清楚了,不懂的可以dd我~
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
int Max = 100005;
int m, n;
int pre[100005] = { 0 };
int temp[100005] = { 0 };
int relate[1000][1000];//用于标记敌对关系
int r[1000][1000];//用于标记直接的朋友关系
void init(int n)//初始化,让每个人的前驱结点为他自己
{
for (int i = 1; i <= n; i++)
{
pre[i] = i;//初始化
}
}
int find(int x)//寻找根结点
{
if (pre[x] == x) return x;
return pre[x] = find(pre[x]);
}
void unit(int x, int y,int d)
{
int rx = find(x);
int ry = find(y);
if (rx != ry && d == 1)//朋友关系
{
r[x][y] = 1;
r[y][x] = 1;
pre[rx] = ry;
}
if (d == -1)//如果是敌对关系
{
relate[x][y] = 1;
relate[y][x] = 1;
}
}
int main()
{
int a, b, c,k,num;
cin >> n >> k>>num;
init(n);//初始化m*n的易威数组
for (int i = 0; i < k; i++)
{
cin >> a >> b>>c;
unit(a, b,c);//联合
}
for (int i = 1; i <=num; i++)
{
int a, b;
cin >> a >> b;
//如果两位宾客之间是朋友,且没有敌对关系,则输出No problem
if (find(a) == find(b) && relate[a][b] != 1 && relate[b][a] != 1)
{
cout << "No problem" << endl;
}
//如果他们之间并不是朋友,但也不敌对,则输出OK
else if (find(a) != find(b) && relate[a][b] != 1 && relate[b][a] != 1)
{
cout << "OK" << endl;
}
//没有敌对关系,但是有共同朋友,注意这里不是直接的朋友
else if (find(a)==find(b)&&relate[a][b] == 1 && relate[b][a] == 1&& r[a][b] != 1 && r[b][a] != 1)
{
cout << "OK but..." << endl;
}
//如果他们之间只有敌对关系,则输出No way。
else if (find(a) != find(b) && relate[a][b] == 1 && relate[b][a] == 1)
{
cout << "No way" << endl;
}
}
}