并查集的应用

并查集最常用的应用也就是初始化,联合,和寻找代码也很简单:

void init(int n)//初始化,将自己的前驱设为自己
{
    for (int i = 1; i <= n; i++)
    {
        pre[i] = i;//pre[i]表示i的前驱
    }
}
int find(int x)//寻找x结点根结点,这里采用了路径压缩算法
{
    if (pre[x] == x) return x;
    return pre[x] = find(pre[x]);
}
void unit(int x, int y)//将x,y联合为一组
{
    int rx = find(x);
    int ry = find(y);
    if (rx != ry) pre[rx] = ry;//这里谁是是谁的前驱不那么重要
}

下面是一道pta上简单的应用:

题目:

L2-010 排座位 (25 分)

布置宴席最微妙的事情,就是给前来参宴的各位宾客安排座位。无论如何,总不能把两个死对头排到同一张宴会桌旁!这个艰巨任务现在就交给你,对任何一对客人,请编写程序告诉主人他们是否能被安排同席。

输入格式:

输入第一行给出3个正整数:N(≤100),即前来参宴的宾客总人数,则这些人从1到N编号;M为已知两两宾客之间的关系数;K为查询的条数。随后M行,每行给出一对宾客之间的关系,格式为:宾客1 宾客2 关系,其中关系为1表示是朋友,-1表示是死对头。注意两个人不可能既是朋友又是敌人。最后K行,每行给出一对需要查询的宾客编号。

这里假设朋友的朋友也是朋友。但敌人的敌人并不一定就是朋友,朋友的敌人也不一定是敌人。只有单纯直接的敌对关系才是绝对不能同席的。

输出格式:

对每个查询输出一行结果:如果两位宾客之间是朋友,且没有敌对关系,则输出No problem;如果他们之间并不是朋友,但也不敌对,则输出OK;如果他们之间有敌对,然而也有共同的朋友,则输出OK but...;如果他们之间只有敌对关系,则输出No way

输入样例:

7 8 4
5 6 1
2 7 -1
1 3 1
3 4 1
6 7 -1
1 2 1
1 4 1
2 3 -1
3 4
5 7
2 3
7 2

输出样例:

No problem
OK
OK but...
No way

 代码:

思路在注释上已经也的很清楚了,不懂的可以dd我~

#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
int Max = 100005;
int m, n;
int pre[100005] = { 0 };
int temp[100005] = { 0 };
int relate[1000][1000];//用于标记敌对关系
int r[1000][1000];//用于标记直接的朋友关系
void init(int n)//初始化,让每个人的前驱结点为他自己
{
    for (int i = 1; i <= n; i++)
    {
        pre[i] = i;//初始化
    }
}
int find(int x)//寻找根结点
{
    if (pre[x] == x) return x;
    return pre[x] = find(pre[x]);
}
void unit(int x, int y,int d)
{
    int rx = find(x);
    int ry = find(y);
    if (rx != ry && d == 1)//朋友关系
    {
        r[x][y] = 1;
        r[y][x] = 1;
        pre[rx] = ry;
    }
    if (d == -1)//如果是敌对关系
    {
        relate[x][y] = 1;
        relate[y][x] = 1;
    }
}

int main()
{
    int a, b, c,k,num;
    cin >> n >> k>>num;
    init(n);//初始化m*n的易威数组
    for (int i = 0; i < k; i++)
    {
        cin >> a >> b>>c;
        unit(a, b,c);//联合
    }

    for (int i = 1; i <=num; i++)
    {
        int a, b;
        cin >> a >> b;
        //如果两位宾客之间是朋友,且没有敌对关系,则输出No problem
        if (find(a) == find(b) && relate[a][b] != 1 && relate[b][a] != 1)
        {
            cout << "No problem" << endl;
        }
        //如果他们之间并不是朋友,但也不敌对,则输出OK
        else if (find(a) != find(b) && relate[a][b] != 1 && relate[b][a] != 1)
        {
            cout << "OK" << endl;
        }
        //没有敌对关系,但是有共同朋友,注意这里不是直接的朋友
        else if (find(a)==find(b)&&relate[a][b] == 1 && relate[b][a] == 1&& r[a][b] != 1 && r[b][a] != 1)
        {
            cout << "OK but..." << endl;
        }
        //如果他们之间只有敌对关系,则输出No way。
        else if (find(a) != find(b) && relate[a][b] == 1 && relate[b][a] == 1)
        {
            cout << "No way" << endl;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值