- 博客(574)
- 收藏
- 关注
原创 深入理解JavaScript Promise:从入门到精通
JavaScript Promise详解 Promise是JavaScript处理异步操作的核心机制,解决了回调地狱问题。它有三种状态:Pending(待定)、Fulfilled(已完成)和Rejected(已拒绝)。Promise通过then()、catch()和finally()方法实现链式调用和错误处理,并提供Promise.all()、Promise.race()等静态方法处理多个异步操作。典型应用包括网络请求封装、异步操作顺序执行等场景,使异步代码更清晰易维护。
2025-07-07 18:51:17
309
原创 深入理解 Redux Toolkit 中的 createAsyncThunk
Redux Toolkit的createAsyncThunk简化了React应用中的异步状态管理。它自动生成pending/fulfilled/rejected三种action类型,并提供内置错误处理、状态访问等功能。通过在slice中使用builder回调处理不同状态,开发者可以轻松管理加载状态和数据更新。createAsyncThunk还支持条件执行、自定义序列化等高级用法,使异步操作更可控。搭配React组件使用时,只需dispatch对应的thunk即可完成完整的数据获取流程,显著提升开发效率。
2025-07-07 14:55:22
313
原创 深入理解 classnames:React 动态类名管理的最佳实践
classnames 库简化了前端开发中动态类名管理的问题,通过简洁的API高效处理多种类名组合场景。相比传统字符串拼接方式,它减少代码冗余,避免空格和条件处理错误。文章介绍了其安装方法、基础语法(支持字符串、对象、数组等参数),并展示了在UI组件、表单验证和主题切换中的实际应用。通过创建类名生成器等高级技巧,可进一步提升代码复用性。classnames 使动态样式管理更加优雅和可维护。
2025-07-06 18:49:38
448
原创 React Ref 指南:原理、实现与实践
React Ref是直接访问DOM元素或组件实例的重要工具,适用于管理焦点、触发动画等场景。文章介绍了Ref的演进历史,从废弃的String Refs到现代的useRef Hook,详细对比了useRef与useState的特性差异。通过实际案例展示了Ref在DOM操作、存储可变值和保存前值中的应用,还介绍了forwardRef转发和useImperativeHandle自定义实例等高级技巧。全文系统讲解了React Ref的核心概念与最佳实践,帮助开发者正确使用这一功能。
2025-07-06 16:16:05
374
原创 styled-components:现代React样式解决方案
摘要: styled-components 是一个流行的 CSS-in-JS 库,通过将样式与 React 组件结合,提供组件化的样式管理方案。其核心特性包括自动前缀、动态样式、主题支持和 SSR 兼容。安装简单,支持 TypeScript 和 Babel 插件优化。基础用法通过模板字面量创建样式组件,并可基于 props 实现动态样式。高级功能涵盖样式继承、复合条件渲染以及样式化现有组件。内置主题系统允许全局样式配置,通过 ThemeProvider 统一管理设计变量,提升代码可维护性。适用于现代 Rea
2025-07-06 14:36:55
947
原创 Python统一调用多家大模型API指南
摘要: 本文介绍了两种统一调用多家大模型API(如OpenAI、Anthropic、Google等)的Python方案: LiteLLM:轻量级库,提供OpenAI格式的统一接口,支持多模型切换、流式响应和故障转移,代码简洁易用。 LangChain:全功能框架,支持异步多模型对比和链式调用(如GPT-4翻译+Claude校对),适合复杂应用场景。 两种方案均附代码示例,帮助开发者灵活选择模型、优化成本并提升可用性。
2025-07-05 21:08:36
757
原创 TypeScript 类组件完全指南:从入门到精通
本文探讨了TypeScript中React类组件的使用,从基础语法到高级应用。类组件继承自React.Component或React.PureComponent,通过render方法返回JSX。文章详细介绍了Props和State的类型定义,展示了如何通过接口确保类型安全,并提供了表单验证等实际示例。此外,还介绍了类组件的生命周期方法,如获取数据的场景。虽然函数组件和Hooks已成为主流,但掌握类组件仍是理解React核心概念的重要基础,结合TypeScript可提供更强的类型安全和开发体验。
2025-07-05 18:41:03
340
原创 Minstrel:多智能体协作生成结构化 LangGPT 提示词
Minstrel是一个基于LangGPT框架的多智能体提示词生成系统,旨在降低非AI专家的使用门槛。通过分析组、设计组和测试组的协同工作,它自动生成结构化的提示词(包含模块和元素两层架构),显著提升生成质量。该系统已在GPT-4-turbo等模型上验证有效性,支持链式问答、专业测验等场景。用户可通过简单命令启动Web界面交互使用。未来计划扩展多语言支持和低资源模型适配。项目开源并提供详细文档(GitHub/arXiv)。
2025-07-05 09:54:53
474
原创 项目介绍:LangGPT
摘要:LangGPT是一个结构化提示词框架,采用模板、变量与指令三大机制,帮助用户像编程一样创建高质量、可复用的ChatGPT提示。该框架解决了传统提示设计零散、不易复用的问题,通过模块化结构提升效率。其亮点包括双层结构化设计、类似编程语言的变量封装、实证验证的显著效果(用户满意度8.48/10)以及社区支持。无需安装即可使用Markdown模板,支持GPT-4/3.5等模型,并计划扩展多平台兼容性。项目地址:https://github.com/langgptai/LangGPT
2025-07-04 23:40:32
656
原创 项目介绍:wonderful‑prompts
是 LangGPTAI 旗下的一个中文 ChatGPT 提示词精选项目,旨在通过精挑细选与优化,帮助用户提升 ChatGPT 的互动乐趣与使用效率 (该仓库自 2023 年 4 月创建以来,已有 3.3k+ Star、超过 290 个 Fork,持续为广大中文用户提供实用提示结构 (
2025-07-04 23:35:54
335
原创 项目介绍:Awesome System Prompts
是一个由 LangGPTAI 社区维护的开源收集库,旨在整理各大流行 LLM、AI 工具与产品的系统提示词(System Prompts),包括 ChatGPT、Claude、Gemini、Grok、Qwen 等模型,利于研究者、工程师快速参考其内部逻辑与输出风格 (github.com。
2025-07-04 23:27:11
481
原创 从零开始创建一个react项目完整实践(非常全面,建议收藏)
本文介绍了React项目开发的完整流程,从环境准备到部署上线。主要内容包括:1) 安装Node.js和包管理器;2) 使用Vite或Create React App创建项目;3) 初始化开发环境并配置目录结构;4) 推荐开发顺序:路由规划→页面框架→组件体系→状态管理→API封装→业务逻辑开发→权限控制→环境配置→用户体验优化;5) 调试测试与部署方案。文章还提供了Vite+React+TypeScript的项目模板建议,适合中小型到中大型项目参考。整个流程强调模块化开发和工程化规范,涵盖了从技术选型到实际
2025-07-04 22:41:26
645
原创 当前主流AI智能代理框架对比分析报告
AI智能代理框架对比分析报告摘要 本报告对主流AI智能代理框架进行技术对比,涵盖AutoGPT、LangChain、MetaGPT等8个框架。从架构设计看,AutoGPT侧重单Agent任务分解,MetaGPT采用软件工程SOP流程,CrewAI模拟企业团队协作。功能上,多Agent协作、工具集成和记忆系统成标配,但MetaGPT的任务拆解和LangChain的模块化设计尤为突出。应用场景差异明显:MetaGPT/ChatDev适合软件开发,CrewAI擅长办公自动化,LangChain主导文档QA系统。开
2025-07-04 22:28:47
942
原创 TypeScript文件扩展名:.tsx vs .ts 指南
TypeScript中.ts和.tsx文件的区别与用途 .ts文件是标准TypeScript文件,用于纯TypeScript代码,包含工具函数、类型定义和业务逻辑等。.tsx文件支持JSX语法,专门用于React组件开发。主要区别在于: JSX语法支持:.tsx允许使用JSX,.ts则不支持 编译器行为:处理这两种文件时编译器配置不同 泛型语法:.tsx需要特殊处理避免与JSX标签冲突 适用场景:.ts用于逻辑层和类型定义,.tsx用于React组件 项目结构建议按功能划分目录,分别使用对应扩展名。tsco
2025-07-04 19:15:08
1006
原创 如何创建基于 TypeScript 的 React 项目
本文介绍了如何创建基于TypeScript的React项目。使用Create React App(CRA)工具可以快速搭建开发环境,通过--template typescript参数初始化TS项目。文章说明了TypeScript的优势:类型安全、代码可维护性、IDE支持和错误提前发现。详细讲解了项目结构、运行方式,并通过代码示例展示了如何为React组件定义接口类型、使用泛型指定状态类型等TypeScript特性。最后简要提及了可选的TS配置调整,如修改tsconfig.json文件。通过TypeScrip
2025-07-04 16:26:02
929
原创 TypeScript vs JavaScript: 开发者必须了解的核心差异
JavaScript与TypeScript是现代前端开发的两大主流技术。JavaScript作为动态类型语言,开发灵活但运行时易出错;TypeScript作为其静态类型超集,通过编译时类型检查显著提升代码质量。两者核心差异体现在:1)类型系统(动态vs静态);2)错误检测时机(运行时vs编译时);3)开发体验(TypeScript提供智能提示);4)面向对象支持(TypeScript更完善);5)泛型能力(TypeScript特有)。TypeScript更适合大型复杂项目,而JavaScript适用于小型快
2025-07-04 15:49:52
862
原创 为什么 React 不属于标准的 MVP 架构?
React组件与MVP架构存在本质区别:MVP严格分层,由Presenter控制被动View;而React组件融合了视图与逻辑,通过状态驱动主动更新。React更接近MVVM或Flux模式,其优势在于灵活组合、声明式编程和丰富生态。核心差异在于React没有独立Presenter层,组件自身承担了MVP中View和Presenter的双重职责。这种设计更适合现代前端开发需求。
2025-07-04 15:03:00
628
原创 MVC 架构设计模式
本文介绍了MVC架构模式的核心思想及其实际应用。MVC通过分离Model(数据逻辑)、View(界面展示)和Controller(业务调度)实现代码解耦,提升可维护性。文章通过Django博客系统、Spring Boot管理系统、Backbone.js前端应用和Android天气应用四个典型案例,展示了MVC在不同技术栈中的实现方式。最后对比了MVC与MVVM、MVP的差异,并给出实践建议:保持Controller轻量、使用ORM管理数据、封装通用逻辑等。MVC仍是现代软件开发中广泛使用的基础架构模式。
2025-07-03 17:12:29
996
原创 transformer位置编码研究相关的综述、论文
位置编码技术研究综述 本文系统梳理了位置编码的关键技术与最新进展。基础方法包括绝对位置编码(如Transformer正弦函数)和相对位置编码(如RoPE、Alibi),后者在长序列建模中表现更优。改进方向涵盖动态编码(如CPE)、数学结构优化(如小波编码)及跨领域应用(CV、地理AI等)。对比分析显示,相对编码在长程依赖任务中优势明显,但计算复杂度较高。前沿趋势聚焦无损外推、生物启发编码及多模态统一表征。该领域持续推动Transformer架构在时序与空间任务中的性能突破。
2025-07-02 21:32:47
603
原创 提示词工程推荐阅读论文
本文汇总了提示工程领域的核心研究方向与论文资源,涵盖少样本提示、思维链推理、自洽性优化、生成知识提示、自动提示工程、多模态提示、提示技巧和对抗提示等关键技术。每项技术都附有对应的arXiv论文链接和简短的创新点说明,如思维链提示用于诱导大模型推理、生成知识提示提升常识推理能力等。资源还提供了扩展阅读入口和实用提示词库链接,为研究人员和开发者提供了系统性的提示工程学术参考与实践工具。
2025-07-02 19:27:39
1389
原创 GraphPrompts:图神经网络领域的提示工程范式革新者
微软研究院提出的GraphPrompts框架将提示学习引入图神经网络领域,通过Prompt Pooling和Prompt Tuning机制提升了GNN在节点分类、图分类等任务上的迁移能力和性能。该方法仅需微调少量参数,在多个基准数据集上显著优于传统方法,尤其适用于小样本和跨图迁移场景。GraphPrompts支持主流GNN架构,为药物发现、社交网络分析等应用提供了新思路,标志着图神经网络向更通用、高效的范式迈进。项目已开源,地址:https://github.com/microsoft/GraphPromp
2025-07-02 18:59:29
1035
原创 自我反思(Reflexion):让大模型学会“反思自己”的提示技术
摘要:Reflexion是一种提升大语言模型表现的新技术,通过"尝试-反思-改进"的迭代机制优化输出质量。其流程包括初始生成、自我评估错误、反思总结、策略调整和重复迭代,可应用于代码生成、科学推理等场景。与ReAct、ART等方法相比,Reflexion独特之处在于引导模型审视自身决策。相关研究显示该方法能显著提升模型表现,GitHub已有开源实现。这项技术体现了AI从被动应答向主动问题求解的演进趋势。(150字)
2025-07-02 18:41:45
336
原创 重塑智能体决策路径:深入理解 ReAct 框架
ReAct(Reason + Act)框架由 Google Research 于 2022 年提出,是一种面向大型语言模型智能体的思维与行动协同架构。让语言模型在完成复杂任务时,不仅输出答案,还能显式地产生中间推理过程(Thought)和相应动作(Action),并基于环境反馈继续思考。结论内容✅ ReAct 优点可解释性强、适合人机交互、推理链清晰、Prompt 架构简单易复用✅ ART 优点工具调用更智能、对复杂任务处理能力更强、支持训练调度策略、可扩展性高⚠️ 结合可能性。
2025-07-02 18:18:55
1302
原创 PAL(程序辅助语言模型)技术详解
PAL(程序辅助语言模型)是一种结合自然语言理解与程序执行能力的AI技术。它通过让语言模型生成程序代码处理精确计算和逻辑推理任务,解决了传统语言模型在数学运算、数据分析等方面的精度问题。PAL采用混合架构,包括问题分析、代码生成、安全执行和结果整合等环节,显著提升了复杂推理任务的准确性和可解释性。其优势体现在精确计算、透明推理和多领域适应能力上,可应用于数学求解、逻辑推理、数据分析和算法设计等场景。未来发展方向包括增强代码生成能力、拓展应用领域和建设开发者生态系统。
2025-07-02 18:12:12
914
原创 Active-Prompt:让AI更智能地学习推理的革命性技术
靶向学习:专注于最需要改进的领域资源优化:最大化人工标注的投资回报率效果显著:在多个基准测试中持续超越基线方法。
2025-07-02 18:02:00
967
原创 ART(Automatic Reasoning and Tool-use):自动推理与工具使用的革命性突破
ART技术:大语言模型自动推理与工具调用框架 摘要:ART(Automatic Reasoning and Tool-use)技术是一种革命性AI框架,通过结合语言模型推理能力与外部工具调用,显著提升复杂问题解决能力。该系统包含推理引擎、工具库和执行协调器三大核心组件,采用四阶段工作流程(问题分析、策略制定、执行和结果整合)。相比传统模型,ART具备实时信息获取、精确计算、强扩展性等优势,可应用于科研、商业、教育等多领域。当前技术挑战包括工具整合、推理准确性等问题,未来将向多模态集成、自适应学习等方向发展,
2025-07-02 17:50:24
667
原创 思维树(Tree of Thoughts): 超越链式思维的AI推理新范式
思维树(Tree of Thoughts)是一种新型AI推理框架,通过树状搜索结构实现复杂问题的系统性求解。相比传统链式思维,TOT具备多分支探索、状态评估和回溯能力,能更高效寻找最优解。其核心包括思维状态、状态生成器、评估器和搜索算法四个组件,适用于数学证明、创意写作等复杂任务。虽然计算复杂度较高,但通过剪枝、并行化等技术可优化性能。未来发展方向包括自适应搜索和多模态扩展。在24点游戏案例中,TOT展现了系统性探索优势,通过状态评估和回溯成功找到解决方案。
2025-07-02 17:33:43
917
原创 Prompt Engineering Guide — 提示工程全方位指南
Prompt Engineering Guide 是一个由 DAIR AI Lab 维护的开源项目,致力于系统性地总结和分享提示工程(Prompt Engineering)的理论与实践方法。随着大语言模型(如 GPT 系列、Claude、Gemini 等)的广泛应用,如何设计有效提示以发挥模型最大能力,成为当前人工智能领域的重要研究和应用方向。该项目以教程、案例和最佳实践为核心,帮助开发者和研究者快速掌握提示设计技巧,提升大模型交互的效率和效果。
2025-07-02 16:15:17
492
原创 Interpretable Dual-Channel Convolutional Neural Networks for Lithology Identification Based on Multi
摘要:本文提出一种基于多源遥感数据的可解释双通道卷积神经网络(DC-CNN)岩性识别方法。该方法通过并行双通道结构,分别处理GF5B高光谱数据的光谱特征和多时相Landsat-8数据的空间特征(含温度、湿度等环境特征),实现了93.51%的总体分类精度。结合SHAP可解释性分析,揭示了环境特征对岩性识别的重要贡献,验证了模型在地质调查中的实用价值。与传统方法相比,该模型显著提升了岩性识别的准确性和可解释性。
2025-06-29 16:24:53
820
原创 论文阅读提示词
学术研究总结模板(150字以内) 研究背景:指明研究领域的现状与关键问题 研究目的:明确论文拟解决的核心科学问题 研究设计:简述实验/研究框架与技术路线 研究方法:概述主要研究工具与分析手段 研究结果:提炼最具突破性的研究发现(含数据支持) 研究结论:总结研究揭示的新规律/机制 创新点:突出方法论或理论层面的原创贡献 不足与展望:客观说明研究局限性及未来方向 (示例:针对深度学习论文) 该研究通过改进CNN损失函数(创新点),在ImageNet数据集实现95%识别准确率(结果),证实了深度学习在复杂图像识别
2025-06-21 21:21:27
134
1
原创 改进版多尺度随机森林目标检测
本文探讨了传统目标检测中固定窗口尺寸的局限性及多尺度检测解决方案。固定窗口存在无法适应目标尺寸变化、检测精度低等问题。文中提出三种改进方法:1)使用不同窗口尺寸分别训练分类器;2)通过图像金字塔缩放检测;3)自适应调整候选区域。对比分析显示,资源充足时可组合多种方法,实时场景适合自适应检测,而深度学习模型(YOLO/SSD等)能更高效地处理多尺度问题。附带的Python代码实现了一个基于随机森林的多尺度检测器,包含特征提取、滑动窗口检测和结果可视化等功能,展示了传统方法的工程实现细节。
2025-06-19 13:52:15
332
原创 使用随机森林实现目标检测
传统目标检测方法:随机森林与滑动窗口实现 本文提出了一种基于传统机器学习的目标检测方案,核心实现思路包括:1)采用滑动窗口策略遍历图像;2)提取多维特征(LBP纹理、灰度共生矩阵、边缘密度等);3)使用随机森林进行二分类;4)后处理优化检测结果。该方法特别适用于计算资源受限的场景,具有以下优势:实现简单、训练快速、特征可解释性强。应用时需注意:数据收集要覆盖各种场景;根据目标特性优化特征组合;调整窗口尺寸和检测阈值;可配合多尺度检测提升效果。这种传统方法可作为深度学习方案的有效补充,尤其适用于嵌入式设备和快
2025-06-19 13:26:16
513
原创 ESLint从入门到实战
ESLint指南:从入门到实战 ESLint作为JavaScript代码静态分析工具,可以帮助开发者统一代码风格、发现潜在错误并提高代码质量。本文介绍了ESLint的核心功能包括代码质量检查、风格统一和错误预防,并详细讲解了安装和配置方法。 主要内容包括: 如何安装ESLint并通过交互式命令创建配置文件 配置文件的核心选项详解:环境配置、扩展规则、解析器、插件和具体规则设置 不同配置文件的优先级和格式选择 高级配置选项如全局变量定义 文章还介绍了ESLint的插件化架构和自动修复功能,为开发者提供了从基础
2025-06-18 21:03:52
930
原创 FLAML:快速轻量级自动机器学习框架
FLAML是微软开发的高效自动机器学习框架,核心优势在于采用CFO算法实现经济高效的超参数优化,支持多种主流算法(LightGBM、XGBoost等)和灵活配置。安装简便(pip install flaml),提供分类/回归任务快速示例代码,支持自定义评估指标、特征工程和早停策略等高级功能。FLAML特别注重资源优化,可设置时间预算和内存限制,并允许定制搜索空间。其自动化流程涵盖模型选择、超参数调优等环节,显著降低机器学习应用门槛,适合在有限资源条件下快速构建高质量模型。
2025-06-18 19:11:45
663
原创 MCP数据可视化服务器配置依赖
MCP数据可视化服务器项目摘要:该项目包含一个智能数据可视化服务器,支持通过MCP协议提供数据分析和可视化服务。核心功能包括数据集获取、数据结构分析、可视化方案推荐、图表创建和数据洞察生成。项目采用Python开发,依赖Pandas、Matplotlib等数据处理和可视化库,支持CSV/JSON/Excel格式数据输入和PNG/SVG/PDF输出。服务器配置灵活,可通过JSON文件设置默认样式、图表尺寸等参数,并提供6种核心工具供大模型调用。项目包含完整的启动脚本、依赖管理、日志记录和功能测试模块,支持异步
2025-06-15 21:36:11
1015
原创 如何设计一个既提供绘图Tools又提供example_data的MCP服务器:
方案2:混合模式(Resources + Tools)大模型的使用流程方案1流程(推荐)大模型可以主动调用 获取示例数据大模型拿到数据后,主动调用 进行绘图整个过程无需人工干预方案2流程用户或客户端需要先选择要使用的Resource(example_data)大模型获得数据后,可以主动调用 ToolPython实现示例建议推荐使用方案1(全Tools),因为:这样大模型就可以:
2025-06-15 21:00:45
382
原创 Vite:下一代前端构建工具的革命性突破
Vite是一款由Vue.js作者开发的新一代前端构建工具,以极速启动和高效热更新著称。它基于原生ES模块,无需打包即可启动开发服务器,并通过依赖预构建和精准HMR提升开发体验。Vite框架无关,支持Vue、React等多种技术栈,提供丰富的插件生态。相比Webpack等传统工具,Vite在启动速度、热更新效率上有显著优势,同时配置更简单。文章详细介绍了Vite的核心原理、特性、应用场景以及性能优化策略,对比了不同构建工具的差异,并展望了Vite的未来发展方向。
2025-06-15 14:14:28
649
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人