
深度学习
文章平均质量分 63
司南锤
记录个人学习历程,与大家一起交流成长~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
SE机制深度解析:从原理到实现
Squeeze-and-Excitation (SE) 机制是一种高效的通道注意力机制,通过显式建模特征通道间的依赖关系来提升CNN性能。其核心包含Squeeze(全局平均池化压缩空间信息)和Excitation(全连接层学习通道权重)两个操作,最终重新校准特征响应。SE机制计算成本低、即插即用,在ResNet等网络中仅增加少量参数即可带来约1%的ImageNet分类准确率提升。文章详细解析了SE模块的PyTorch实现,展示了如何将其集成到卷积块和残差块中,并分析了其通用性强、适用于多种视觉任务的优势。S原创 2025-07-12 18:06:38 · 653 阅读 · 0 评论 -
知识蒸馏实战:用PyTorch和预训练模型提升小模型性能
知识蒸馏是一种将大型、高性能的“教师模型”的知识迁移到小型、高效的“学生模型”中的技术,旨在解决深度学习模型在资源受限环境中的部署问题。通过模仿教师模型的“软标签”,学生模型能够在保持高性能的同时减少计算成本。本文详细介绍了知识蒸馏的核心概念,包括教师模型、学生模型、软标签和蒸馏损失,并通过PyTorch实现了一个图像分类的知识蒸馏案例。具体步骤包括导入库、定义教师模型(预训练的ResNet18)、定义学生模型(简单的CNN)、定义蒸馏损失函数,并最终组合这些部分进行训练。通过这种方式,学生模型能够在较小的原创 2025-05-16 21:39:03 · 1096 阅读 · 0 评论 -
深度学习数据集划分指南:训练集、验证集、测试集的最佳比例
训练集(Train)、验证集(Valid)和测试集(Test)分别承担不同角色,其比例需根据数据规模、任务复杂度等因素动态调整。• 调整建议:若任务复杂(如NLP、目标检测),可提高验证/测试集比例至25%~30%以覆盖更多边缘案例。• 理论依据:百万级数据中,1%的测试集已足够保证统计显著性(如ImageNet测试集仅占3.7%)。• 自动驾驶:需提高测试集比例(25%~30%)以覆盖罕见场景(如极端天气)。• 医疗/金融:测试集比例可降至10%~15%,但需严格保证样本代表性。二、通用划分比例推荐。原创 2025-04-28 09:23:14 · 3699 阅读 · 0 评论 -
全面解析 classification_report:评估分类模型性能的利器
还会计算加权平均(weighted avg)、宏平均(macro avg)和微平均(micro avg),从而全面评估模型的整体表现。在机器学习中,分类任务是最常见的应用场景之一。无论是垃圾邮件过滤、图像识别还是情感分析,分类模型的性能评估都是至关重要的一步。为了更好地展示分类报告的结果,可以结合 Matplotlib 或 Seaborn 绘制条形图或热力图。是 Scikit-learn 提供的一个强大工具,用于快速生成分类模型的性能报告。如果希望将分类报告的结果用于后续分析或可视化,可以设置。原创 2025-04-23 22:17:10 · 1008 阅读 · 0 评论 -
TensorBoard如何在同一图表中绘制多个线条
可以在启动 TensorBoard 时指定日志目录的父目录,TensorBoard 会自动加载所有子目录中的日志文件,并将每个子目录视为一个独立的运行。可以为每次运行指定一个独立的日志目录,TensorBoard 会自动将这些目录中的数据加载并显示为不同的运行。虽然标签主要用于区分同一运行中的不同数据(例如不同的指标),但也可以通过在标签中添加前缀或后缀来区分不同运行的数据。文件,其中包含运行的描述信息。TensorBoard 会读取这些描述信息,并在运行选择器中显示,帮助快速区分不同的运行。原创 2025-04-22 00:03:04 · 556 阅读 · 0 评论 -
空间注意力和通道注意力的区别
对特征图的每个通道分配不同的权重,强调“哪些通道更重要”。例如,在RGB图像中,可能红色通道对识别苹果更重要,而绿色通道对识别树叶更重要。对特征图的每个空间位置(即像素点)分配权重,强调“哪些区域更重要”。例如,在目标检测中,模型会更关注目标所在的区域而非背景。原创 2025-04-21 23:58:09 · 833 阅读 · 0 评论 -
Github十大最佳RAG框架推荐
• 特点: 模块化架构,支持Elasticsearch/FAISS/SQL等存储后端,集成BERT/RoBERTa等模型,适合端到端问答系统开发。• 特点: 多功能AI平台,支持语义搜索、多语言处理及自定义工作流,适合一体化AI解决方案。• 特点: 提供可视化工作流设计,预配置管道,支持主流向量数据库,简化RAG开发流程。• 特点: 端到端开发平台,内置监控和MLOps支持,适合企业级应用。• 特点: 多阶段检索优化,支持混合搜索和知识图谱,适合复杂检索场景。原创 2025-04-20 18:08:18 · 328 阅读 · 0 评论 -
自注意力机制q、k、v计算代码及其应用案例
通过线性变换生成Q/K/V,计算注意力权重后加权聚合Value。适用于需要捕捉局部依赖关系的场景。:将输入拆分为多个头的子空间并行计算,增强模型捕捉多样化特征的能力。:适用于股票价格预测、设备故障检测等时序数据分析任务。原创 2025-04-08 17:21:46 · 354 阅读 · 0 评论 -
在深度学习中,如何统计模型的 FLOPs(浮点运算次数) 和 参数量(Params)
• 示例:输入尺寸为224×224,卷积核3×3,输出通道64,则单样本FLOPs为3×3²×64×224×224×2≈5.2×10⁹。• FLOPs(复数)指总浮点运算次数,用于模型复杂度;FLOPS(全大写)指每秒浮点运算次数,衡量硬件性能。• 示例:输入通道为3,输出通道为64,卷积核3×3,则参数量为64×(3×3²)+64=1,792。• FLOPs仅反映理论计算量,实际速度还受内存带宽、并行优化等因素影响。• 某些自定义层(如注意力机制)可能未被统计,需手动补充。• 无参数,参数量为0。原创 2025-04-07 21:37:10 · 1038 阅读 · 0 评论 -
深度学习数据集划分比例多少合适
在机器学习和深度学习中,测试集的划分比例需要根据数据量、任务类型和领域需求灵活调整。原创 2025-04-04 22:46:13 · 1101 阅读 · 0 评论 -
为什么有的深度学习训练,有训练集、验证集、测试集3个划分,有的只是划分训练集和测试集?
最终,测试集应被视为“不可见数据”,仅在模型完全确定后使用一次,以反映真实泛化能力。原创 2025-04-04 22:32:29 · 780 阅读 · 0 评论 -
此非止境,破茧之始
原创 2025-03-30 18:22:07 · 104 阅读 · 0 评论 -
AI三大主义 和 深度学习三大主义
在人工智能(AI)研究领域,"三大主义"通常指三种核心方法论或思想流派,它们代表了不同的技术路径和哲学观点。(Three Dogmas of Deep Learning)是YannLeCun在2019年提出的概念,用于概括当前深度学习研究中的核心假设或局限性。原创 2025-03-29 00:23:30 · 2182 阅读 · 0 评论 -
常用 CNN 深度学习框架 backbone 标准代码
TensorFlow 的 tf.keras.applications 模块同样提供了多种常用 CNN 模型的标准实现,如 ResNet、VGG、DenseNet、MobileNet 和 EfficientNet 等。: PyTorch 的 torch.nn 模块提供了构建 CNN 模型所需的各类层和函数,用户可以根据需要自行搭建和实现各种 CNN 模型。提供了使用 PyTorch 实现 ResNet 模型的详细教程和代码示例,包括如何加载预训练模型和进行迁移学习等内容。原创 2025-02-14 13:40:49 · 680 阅读 · 0 评论 -
卷积神经网络CNN如何处理语音信号
卷积神经网络(CNN)在处理语音数据时通常不直接处理原始的一维波形信号,而是处理经过预处理的二维语音特征图。以下是CNN处理语音数据时的常见数据类型和步骤:语音信号通常是一维的时间序列(波形信号),CNN不直接处理这种一维数据,而是将其转换为二维表示。常见的预处理方法包括:经过预处理后,语音数据通常以二维矩阵的形式输入到CNN中,例如:CNN在语音处理中的应用包括:原创 2025-02-09 11:45:21 · 751 阅读 · 0 评论 -
大模型综合性能考题汇总
阅读下面这段短文,然后用简练的语言总结出主要观点,要求在 3-4 句话内完成。【短文】“随着全球气候变化问题的日益严峻,各国政府和科研机构正加大对可再生能源技术的研发投入。太阳能和风能等清洁能源由于其低碳排放和可持续性,正逐步取代传统化石燃料。与此同时,储能技术的突破也为可再生能源的普及提供了重要保障,推动着全球能源结构的转型。【要求】原创 2025-02-02 21:52:44 · 2326 阅读 · 0 评论 -
mat图像文件一键可视化代码
如果需要对.mat文件中所有非内部变量的数据进行可视化,可以遍历文件中的所有变量,并根据其数据类型和维度选择合适的可视化方法。原创 2025-02-01 19:10:14 · 463 阅读 · 0 评论 -
深度学习电脑硬件配置学习
参考: https://www.bilibili.com/video/BV1VFqZYSEoj?spm_id_from=333.788.player.switch&vd_source=85f2591d228123f6a0d19f88500891c6&p=2原创 2025-02-01 19:07:08 · 684 阅读 · 0 评论 -
tensorboard的基本使用及案例
TensorBoard 是一个强大的可视化工具,可以帮助我们更好地理解模型的训练过程和结果。通过记录标量、图像、直方图、嵌入数据等信息,我们可以在训练过程中实时观察模型的性能,调整训练策略,优化模型结构。TensorBoard 支持自定义图表,可以通过方法定义多条曲线的组合视图。# 定义自定义图表# 记录数据。原创 2025-02-01 13:06:06 · 1148 阅读 · 0 评论 -
深度学习指标可视化案例
【代码】深度学习指标可视化案例。原创 2025-01-29 21:23:38 · 797 阅读 · 0 评论 -
深度学习可视化指标方法工具
适合本地实时监控,功能全面。Neptune和WandB适合复杂的实验管理和团队协作,功能强大。VisualDL适合与PaddlePaddle深度集成的项目。其他可视化方法如高维特征降维、特征图可视化等,有助于深入分析模型的内部工作机制。原创 2025-01-29 21:06:38 · 698 阅读 · 0 评论 -
深度学习中常用的评价指标方法
正确预测的样本数占总样本数的比例。原创 2025-01-29 20:28:06 · 1052 阅读 · 0 评论 -
ResNeSt-2020笔记
实现了一种高效的径向优先(radix-major)实现方式,使得Split-Attention块能够通过标准CNN操作进行加速。提出了一种新的Split-Attention块,能够在不同特征图组之间实现特征图注意力。通过引入新的基数(radix)超参数,扩展了特征图分组的数量,提高了模型的表示能力。原创 2025-01-28 09:26:53 · 260 阅读 · 0 评论 -
ResNeSt: Split-Attention Networks论文学习笔记
Input r),这些输入的特征维度为 (h,w,c),其中 h 和 w 分别表示特征图的高度和宽度,c 表示通道数。拼接后的特征图通过全局池化(Global pooling)操作,将其空间维度(即 h 和 w)压缩为一个单一的值,得到一个维度为 (c′,) 的向量。聚合后的特征图通过全局池化(Global pooling)操作,将其空间维度(即 h 和 w)压缩为一个单一的值,得到一个维度为 (c,) 的向量。Softmax 操作将这些特征向量转换为概率分布,表示每个特征的重要性。原创 2025-01-28 09:20:39 · 1042 阅读 · 0 评论 -
如何解决小尺寸图像分割中的样本不均衡问题
原理:将稀有目标的像素块复制粘贴到其他图像中,低成本生成平衡数据。适用场景:小目标(如车辆、船只)或极端稀疏类别(如灾害损毁区域)。PyTorch 实现:2. 自监督预训练(Self-Supervised Pretraining)原理:利用无标签数据预训练模型,增强特征提取能力,缓解小样本学习压力。适用场景:标注成本高、有大量未标注遥感数据的场景。工具推荐:使用 库实现自监督对比学习:3. 动态类别权重(Class-Balanced Loss)原理:根据每个 batch 的实时类别分布原创 2025-01-27 23:34:19 · 732 阅读 · 0 评论 -
使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
三者结合,可显著缓解影响。在使用小尺寸图像进行逐像素语义分割训练时,小尺寸图像训练会放大样本不均衡问题,但通过。原创 2025-01-27 23:13:43 · 1341 阅读 · 0 评论 -
遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
遥感深度学习基础原创 2025-01-27 23:11:21 · 608 阅读 · 0 评论 -
Spatial Group-wise Enhance (SGE) module
通过可视化和统计分析验证了SGE模块对语义特征分布的优化效果,为理解CNN的特征学习提供了新的视角。提出了一种轻量级的SGE模块,能够自主增强每个语义组的特征表达并抑制噪声,设计简洁且高效。在多种CNN架构和任务中均取得了显著的性能提升,具有广泛的适用性。原创 2025-01-25 20:52:38 · 377 阅读 · 0 评论 -
CBAM-2018学习笔记
【代码】CBAM-2018学习笔记。原创 2025-01-20 16:49:24 · 540 阅读 · 0 评论 -
各类卷积计算相关
卷积计算公式原创 2025-01-20 13:47:33 · 116 阅读 · 0 评论 -
EPSANet2021笔记
注意力机制#多尺度特征表示。原创 2025-01-19 21:27:35 · 405 阅读 · 0 评论 -
EPSANet: An Efficient Pyramid Squeeze Attention Block on Convolutional Neural Network论文参考文献
中文翻译:[37]陈凯、王家琪、庞江苗、曹宇航、熊宇、李潇潇、孙树阳、冯万森、刘子维、徐家瑞、张政、程大志、朱晨晨、程天恒、赵齐杰、李步宇、卢鑫、朱锐、吴悦、戴继峰、王景东、石建平、欧阳万里、LoyChenChange、林达华。中文翻译:[36]林宗义、迈克尔·迈尔、塞尔日·贝洛尼、詹姆斯·海斯、皮耶罗·佩罗纳、德瓦·拉马南、皮奥特·多拉尔、C·劳伦斯·齐特尼克。中文翻译:[12]张航、吴崇若、张仲乐、朱毅、张智、林海斌、孙跃、何通、乔纳斯·穆勒、R.曼马萨、穆·李、亚历山大·斯莫拉。原创 2025-01-19 18:52:58 · 763 阅读 · 0 评论 -
深度学习 - 超参数如何影响模型性能及部分超参数合适的范围
超参数原创 2025-01-19 15:24:48 · 252 阅读 · 0 评论 -
AI 平台 GPU 节点上运行基于 PyTorch 的深度学习任务
首先,确保的环境中已经安装了 PyTorch 及其依赖项。的版本与集群中 CUDA 的版本兼容(根据集群的 CUDA 版本选择合适的版本).创建一个脚本来提交的 PyTorch 训练作业。在安装过程中,接受协议并指定安装目录(例如。将上述脚本保存为一个文件,例如。原创 2025-01-04 18:28:43 · 455 阅读 · 0 评论 -
pytorch中nn.Conv2d详解及参数设置原则
对于简单任务,可以选择较小的输出通道数和标准的 3x3 卷积核。对于复杂任务,可以使用较大的输出通道数和堆叠多个卷积层。使用步幅和填充控制特征图的尺寸变化,保持适当的空间信息。在资源受限的环境中,可以选择分组卷积和膨胀卷积来减少计算量。原创 2025-01-03 08:46:15 · 2271 阅读 · 0 评论 -
Robust Feature Extraction for Geochemical Anomaly Recognition译文
地球化学异常识别中稳健特征提取的堆叠卷积去噪自编码器Yihui Xiong1 · Renguang Zuo1摘要深度神经网络在支持多变量地球化学异常识别的学习高级表示方面表现非常出色。地球化学勘探数据通常包含一定比例的大变化和缺失值,这促使我们构建一个优化的网络架构来处理这些数据。我们的方法采用了堆叠卷积去噪自编码器(SCDAE)来提取稳健特征,并降低了对部分损坏数据的敏感性,即部分缺失的输入数据。通过试错实验优化了SCDAE参数,包括网络深度、卷积层数、卷积核数量和卷积核大小。然后在一个案例研究中,原创 2024-11-24 15:02:41 · 692 阅读 · 0 评论 -
遥感图像标注工具(5) - Semantic-Segment-Anything
对硬件要求较高。原创 2024-11-10 11:45:03 · 218 阅读 · 0 评论 -
遥感深度学习标注工具 (4)- AnyLabeling
详细内容: https://github.com/vietanhdev/anylabeling原创 2024-11-10 11:36:41 · 353 阅读 · 0 评论 -
遥感图像数据标注工具(3) - X-AnyLabeling
详细信息: https://github.com/CVHub520/X-AnyLabeling原创 2024-11-10 11:29:17 · 480 阅读 · 0 评论 -
遥感图像数据标注工具(2) - labelme
详细内容见: https://github.com/wkentaro/labelme?tab=readme-ov-file原创 2024-11-10 11:24:33 · 327 阅读 · 0 评论