#include <iostream>
#include <queue>
#include <vector>
using namespace std;
struct Edge
{
int to, len, cost;
Edge(int to = 0, int len = 0, int cost = 0) : to(to), len(len), cost(cost) {}
};
typedef pair<int, int> P;
vector<Edge> edges[10007];
int inf = 0x3f3f3f3f, N, M, d[10007], ans[10007];
bool used[10007];
void input()
{
int from, to, len, cost;
for (int i = 1; i <= M; i++)
{
scanf("%d%d%d%d", &from, &to, &len, &cost);
edges[from].push_back(Edge(to, len, cost));
edges[to].push_back(Edge(from, len, cost));
}
}
void dijkstra()
{
for (int i = 1; i <= N; i++)
{
d[i] = inf;
used[i] = false;
ans[i] = inf;
}
d[1] = 0;
ans[1] = 0;
priority_queue<P, vector<P>, greater<P>> que;
que.push(P(0, 1));
while (!que.empty())
{
P current = que.top();
que.pop();
if (used[current.second] || current.first > d[current.second])
{
continue;
}
used[current.second] = true;
for (int i = 0; i < edges[current.second].size(); i++)
{
Edge toEdge = edges[current.second][i];
if (d[current.second] + toEdge.len < d[toEdge.to])
{
d[toEdge.to] = d[current.second] + toEdge.len;
ans[toEdge.to] = toEdge.cost;
que.push(P(d[toEdge.to], toEdge.to));
}
if (d[current.second] + toEdge.len == d[toEdge.to] && toEdge.cost < ans[toEdge.to])
{
ans[toEdge.to] = toEdge.cost;
}
}
}
}
void solve()
{
dijkstra();
int res = 0;
for (int i = 1; i <= N; i++)
{
res += ans[i];
}
printf("%d\n", res);
}
void clearAll()
{
for (int i = 1; i <= N; i++)
{
edges[i].clear();
}
}
int main()
{
while (true)
{
scanf("%d%d", &N, &M);
if (N == 0 && M == 0)
{
break;
}
input();
solve();
clearAll();
}
return 0;
}
AOJ 2249 Road Construction 最短路径 Dijkstra算法优化
最新推荐文章于 2025-08-10 14:12:24 发布