AOJ 2249 Road Construction 最短路径 Dijkstra算法优化

该代码实现了一个使用Dijkstra算法求解图中最小路径总和的问题。它读取节点数N、边数M以及每条边的起始点、终点、长度和成本,然后计算从节点1到所有其他节点的最短路径及其成本。最后输出所有节点的最小路径总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <queue>
#include <vector>
using namespace std;
struct Edge
{
    int to, len, cost;
    Edge(int to = 0, int len = 0, int cost = 0) : to(to), len(len), cost(cost) {}
};
typedef pair<int, int> P;
vector<Edge> edges[10007];
int inf = 0x3f3f3f3f, N, M, d[10007], ans[10007];
bool used[10007];
void input()
{
    int from, to, len, cost;
    for (int i = 1; i <= M; i++)
    {
        scanf("%d%d%d%d", &from, &to, &len, &cost);
        edges[from].push_back(Edge(to, len, cost));
        edges[to].push_back(Edge(from, len, cost));
    }
}
void dijkstra()
{
    for (int i = 1; i <= N; i++)
    {
        d[i] = inf;
        used[i] = false;
        ans[i] = inf;
    }
    d[1] = 0;
    ans[1] = 0;
    priority_queue<P, vector<P>, greater<P>> que;
    que.push(P(0, 1));
    while (!que.empty())
    {
        P current = que.top();
        que.pop();
        if (used[current.second] || current.first > d[current.second])
        {
            continue;
        }
        used[current.second] = true;
        for (int i = 0; i < edges[current.second].size(); i++)
        {
            Edge toEdge = edges[current.second][i];
            if (d[current.second] + toEdge.len < d[toEdge.to])
            {
                d[toEdge.to] = d[current.second] + toEdge.len;
                ans[toEdge.to] = toEdge.cost;
                que.push(P(d[toEdge.to], toEdge.to));
            }
            if (d[current.second] + toEdge.len == d[toEdge.to] && toEdge.cost < ans[toEdge.to])
            {
                ans[toEdge.to] = toEdge.cost;
            }
        }
    }
}
void solve()
{
    dijkstra();
    int res = 0;
    for (int i = 1; i <= N; i++)
    {
        res += ans[i];
    }
    printf("%d\n", res);
}
void clearAll()
{
    for (int i = 1; i <= N; i++)
    {
        edges[i].clear();
    }
}
int main()
{
    while (true)
    {
        scanf("%d%d", &N, &M);
        if (N == 0 && M == 0)
        {
            break;
        }
        input();
        solve();
        clearAll();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值