- 博客(6)
- 收藏
- 关注
原创 Keqing:基于知识的问答是LLM的天然CoT导师
大型语言模型(LLMs)在各种自然语言处理(NLP)任务中表现出了非凡的性能,特别是在问答方面。然而,面对超出知识范围的问题时,这些LLMs往往会一本正经地胡说八道。潜在的解决方案可能是融入一个信息检索(IR)模块,并基于检索到的知识生成回答。
2024-03-28 22:00:21
1058
原创 elasticsearch笔记
Elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到所需要的内容。可以结合kibana(数据可视化)、Logstash(数据抓取)、Beats(数据抓取),广泛用于日志数据分析,实时监控等领域。
2024-03-08 15:00:42
402
原创 论文代码运行过程的问题以及解决方案——IRCoT 2.20&2.21
解决:将URL复制到浏览器,下载后保存到其要求的路径下,在手动执行后续操作。再执行下一句unzip -o…以及最后一句rm -rf .temp/pip install wget还是无法使用。下载后,将其命名为processed_data.zip。解决方法:一个一个pip install ✅。这里问题是指,无法连接并下载。wget就可以使用了✅。
2024-02-20 23:14:29
1906
2
原创 针对知识密集型多步骤问题的交叉检索与思维链推理
基于提示的大型语言模型 (LLM) 在生成自然语言推理步骤或用于多步骤问答 (QA) 的思想链 (CoT) 方面具有惊人的强大功能。然而,当LLM无法获得必要的知识或在其参数范围内不是最新的知识时,他们就会陷入困境。虽然使用问题从外部知识源检索相关文本有助于LLM,但我们观察到这种一步检索和阅读方法不足以进行多步 QA。在这里,检索什么取决于已经导出的内容,而导出的内容又可能取决于先前检索的内容。为了解决这个问题,我们提出了 IRCoT,一种多步骤 QA 的新方法,它。
2024-02-16 21:45:03
2574
原创 QA- GNN:使用语言模型和知识图谱的推理问答
尽管大型语言模型在知识密集型任务上具有竞争力,但在记忆所有世界知识特别是长尾知识方面仍然存在局限性。在本文中,我们研究了知识图谱增强语言模型的方法来解决知识图问答(KGQA)的任务,需要丰富的世界知识。现有的工作表明,检索KG知识,以提高LLM提示可以显着提高LLM在KGQA的性能。然而,他们的方法缺乏KG知识的良好形式的语言化,即,它们忽略了KG表示和文本表示之间的差距。为此,我们提出了一个答案敏感的KG到文本的方法,可以将KG知识转化为最的文本化语句KGQA。
2024-02-15 22:24:34
2056
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人