
环境感知的升级之旅
文章平均质量分 83
苦瓜汤补钙
做一个积极向上的仰泳鲈鱼。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
多目标跟踪(MOT)简单整理
多目标跟踪(MOT)技术综述:从基础到交叉路口应用 本文系统介绍了多目标跟踪技术的基本概念、研究难点和主流方法。重点分析了基于检测的跟踪(SORT/DeepSORT)、联合检测跟踪(FairMOT)和注意力机制方法(TransTrack)等技术特点。针对交叉路口场景的特殊挑战,文章提出了多模态融合、BEV视角转换等技术路线,并推荐了适用于智慧交通的ByteTrack、BoT-SORT等方法。同时介绍了常用数据集(MOT17、VisDrone)和评估指标(MOTA、IDF1)。在交叉路口应用中,该技术可支持智原创 2025-07-15 14:19:21 · 911 阅读 · 0 评论 -
激光雷达点云语义分割——Polarseg环境配置
本文提出了一个新的方法——PolarNet,旨在解决单扫描激光雷达(LiDAR)数据在自动驾驶中的语义分割问题。PolarNet通过引入极坐标网格表示法和环形卷积,成功地解决了LiDAR点云数据中的三个主要挑战:硬件延迟:在有限的硬件资源下实现近实时的语义分割。空间分布不均:LiDAR点云分布往往呈现长尾,且数据在空间上的分布不均匀。细粒度语义类:随着技术发展,语义分割的目标类别越来越细化,传统方法面临挑战。通过采用极坐标系而非传统的笛卡尔坐标系,PolarNet更好地平衡了点云数据的分布。原创 2024-12-31 16:04:41 · 1134 阅读 · 2 评论 -
win11+ISAT-SAM:配置安装+使用记录
ISAT-SAM是一款基于的交互式半自动图像分割标注工具info:始终为 ‘ISAT’folder:存储图像的目录name:图像文件的名称widthheightdepth: 图片的尺寸和深度;RGB图为3通道深度note:注释, 与图像相关的任何附加说明的可选字段objectscategory: 标注的种类group: 分组, 从1开始计算: 分割的坐标点 [[x1, y1], [x2, y2], …, [xn, yn]]area:对象覆盖的像素区域layer: 图层, 从1.0开始,每层 + 1。原创 2024-08-29 10:45:07 · 2314 阅读 · 5 评论 -
CloudCompare安装与使用记录——点云标注
CloudCompare是一个三维点云(和三角网格)编辑和处理软件。 最初,它被设计用于在稠密的3D点云之间进行直接比较。它依赖于一个特定的八叉树结构,在执行此类任务时能够获得出色的性能。此外,作为大多数点云CloudCompare是通过地面激光扫描仪获取的,它的目的是在一个标准笔记本电脑——通常超过1000万点(2005年)不久后,点云和三角形云之间的比较网格已支持(见下文)。随后,许多其他点云处理算法相继出现注册,重采样,颜色/法向量/标量域管理,统计计算,传感器管理,交互或自动分割等)原创 2024-07-16 15:44:12 · 11357 阅读 · 0 评论 -
python的使用技巧整理
Python 是一门功能强大且易于学习的编程语言,广泛应用于数据科学、Web开发、自动化脚本等领域。以下是一些使用 Python 的技巧和最佳实践,帮助你更高效地编写代码。希望这些技巧和最佳实践能帮助你更好地使用Python。原创 2024-06-25 11:17:49 · 734 阅读 · 0 评论 -
香橙派AIpro快速上线——纯小白体验版本!!!
香橙派AIpro+ubuntu系统+32G sd卡香橙派AIpro开发板采用昇腾AI技术路线,接口丰富且具有强大的可扩展性,提供8/20TOPS澎湃算力,可广泛使用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理等AI领域。通过昇腾CANN软件栈的AI编程接口,可满足大多数AI算法原型验证、推理应用开发的需求。原创 2024-05-29 16:24:11 · 1256 阅读 · 0 评论 -
检查cuda和pytorch版本是否匹配
在虚拟环境中安装了 PyTorch 后,你可以在该环境中进行各种深度学习任务和开发工作。虚拟环境的好处在于可以隔离不同项目的依赖关系,确保它们之间不会相互影响。在虚拟环境中安装了 PyTorch 后,你可以做以下事情:1. 深度学习模型开发:使用 PyTorch 构建、训练和评估深度学习模型。PyTorch 提供了灵活而强大的工具,使得深度学习任务变得更加容易。2. 实验和研究:在虚拟环境中,你可以轻松地尝试新的深度学习模型、算法和技术,进行实验和研究。原创 2024-04-15 19:51:00 · 2781 阅读 · 0 评论 -
opencalib的标定代码学习
opencailb的源代码。原创 2024-03-14 16:53:06 · 918 阅读 · 0 评论 -
win11配置mmdetection--SOLOV2实例
MMDetection是商汤和港中文大学针对目标检测任务推出的一个开源项目,它基于Pytorch实现了大量的目标检测算法,把数据集构建、模型搭建、训练策略等过程都封装成了一个个模块,通过模块调用的方式,我们能够以很少的代码量实现一个新算法,大大提高了代码复用率。整个MMLab家族除了MMDetection,还包含针对目标跟踪任务的MMTracking,针对3D目标检测任务的MMDetection3D等开源项目,他们都是以Pytorch和MMCV以基础。原创 2024-02-27 16:56:02 · 1477 阅读 · 0 评论 -
配置MMDetection的solov2攻略整理
MMDetection是一个用于目标检测的开源框架,由OpenMMLab开发和维护。它提供了丰富的预训练模型和模块,可以用于各种目标检测任务,如物体检测、实例分割、关键点检测等。原创 2024-02-27 10:55:04 · 1822 阅读 · 0 评论 -
Ubuntu+Anaconda 常用指令记录
注意:在使用conda命令时,确保你已经安装了Anaconda或Miniconda,并已将conda添加到系统的环境变量中。包括源代码、文本等等,通过后缀来决定。例如,.cpp/.cc是c++源代码,而.py是python源代码。用于输入需要前往的路径/目录。,然后输入密码即可;原创 2024-02-13 21:46:23 · 1230 阅读 · 0 评论 -
【点云语义分割】Ubuntu20.04配置运行RangeNet++
如果Cuda下载用的是deb(local),则TensorRT也需要下载Debian包本地安装;而Cuda用runfile安装,就得下载tar压缩安装;两者需要对应,否则安装会报错。将解压出的文件,移动到/usr/local/cuda文件夹下:(根据自己的路径进行修改)选择Archived cuDNN Releases。开始安装,取消安装驱动,其余默认(y)安装。赋予所有用户权限,cudnn安装完成。需要花点时间,请耐心等待。下载完成后,解压到本地。python接口验证。原创 2023-04-24 14:40:18 · 2429 阅读 · 24 评论 -
opencalib中lidar2camera安装记录
我没有把openclib整个安装下来,只装了我需要的lidar2camera,以下是安装过程。因为我开始安装的时候创建了一个calib的虚拟环境,所以无法正常运行,切换环境后即可。依次输入命令,进入刚刚下载好的源文件目录,并进行安装。通过which cmake可以查看安装的路径。原创 2023-10-25 19:07:46 · 3672 阅读 · 17 评论 -
ubuntu20.04系统安装使用labelme标注数据集
2、点击【open】,选择图片;【Edit Polygons】----> 【Create Polygons】2.激活虚拟环境,开始安装。输入“y”,然后回车。1.打开终端创建虚拟环境。3、可以选择自动保存。原创 2023-07-19 15:58:57 · 2872 阅读 · 0 评论