代码随想录day29贪心算法3

134. 加油站

题目链接
文章讲解

class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        // 初始化变量:start表示起始加油站的索引,cur表示当前油量,sum表示油量的总和
        int start = 0, cur = 0, sum = 0;

        // 遍历整个加油站
        for (int i = 0; i < gas.size(); i++) {
            // 计算从当前位置出发时的油量
            sum += gas[i] - cost[i];  // 记录总的油量变化
            cur += gas[i] - cost[i];  // 记录从当前起始点的油量变化
            
            // 如果当前油量小于0,说明无法从当前起点出发,重新设置起始点
            if (cur < 0) {
                start = i + 1;  // 从下一个加油站开始尝试
                cur = 0;  // 油量清零
            }
        }

        // 如果总的油量变化小于0,说明无法完成一圈
        if (sum < 0) return -1;

        // 返回可以完成一圈的起始加油站的索引
        return start;
    }
};

135. 分发糖果

题目链接
文章讲解

class Solution {
public:
    int candy(vector<int>& ratings) {
        const int N = 1e5 + 10;  // 假定足够大的数组大小
        int a[N];  
        fill(a, a + N, 1);
        for (int i = 0; i < ratings.size() - 1; i++) {
            if (ratings[i + 1] > ratings[i]) {
                a[i + 1]=a[i]+1;  // 右边学生评分更高,糖果数量加 1
            }
        }

        // 从右到左遍历,如果左边的学生评分高于右边的学生,增加左边学生的糖果数量
        for (int i = ratings.size() - 1; i >= 1; i--) {
            if (ratings[i - 1] > ratings[i]) {
                a[i - 1] = max(a[i - 1], a[i] + 1);  // 保证左边学生的糖果数量比右边更多
            }
        }
        int ans=0;
        for(int i=0;i<ratings.size();i++)
        {
            ans+=a[i];
        }
        return ans;
    }
};

860.柠檬水找零

题目链接
文章讲解

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
        const int N = 1e5 + 10;  // 假定足够大的数组大小
        int a[N];  // 用数组 a 来记录 5、10、20 面额的钞票数量
        memset(a, 0, sizeof(a));  // 初始化所有面额的钞票数量为 0
        
        // 遍历每个顾客支付的金额
        for (int i = 0; i < bills.size(); i++) {
            // 如果顾客支付的是 5 元钞票,增加 5 元的钞票数量
            if (bills[i] == 5) a[5]++;
            
            // 如果顾客支付的是 10 元钞票
            if (bills[i] == 10) {
                a[10]++;  // 增加 10 元的钞票数量
                a[5]--;   // 减少 5 元的钞票数量用于找零
                // 如果 5 元钞票数量不足,返回 false,表示找零失败
                if (a[5] < 0) return false;
            }
            
            // 如果顾客支付的是 20 元钞票
            if (bills[i] == 20) {
                // 首先尝试找 10 元加 5 元作为找零
                if (a[10] > 0) {
                    a[10]--;  // 减少 10 元的钞票
                    a[5]--;   // 减少 5 元的钞票
                } else {
                    // 否则只能找 5 元钞票,找 3 张 5 元钞票
                    a[5] -= 3;
                }
                // 如果 5 元钞票数量不足,返回 false,表示找零失败
                if (a[5] < 0) return false;
            }
        }
        
        // 如果所有顾客都能顺利得到找零,返回 true
        return true;
    }
};

406.根据身高重建队列

题目链接
文章讲解

class Solution {
public:
 
        static bool cmp(const vector<int>& a, const vector<int>& b) {
        // 如果身高相同,按 position 升序排列;否则按身高降序排列
        if(a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];  // 高度大的排前面
    }

    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        // 排序:先按身高降序,再按 position 升序
        sort(people.begin(), people.end(), cmp);
        
        vector<vector<int>> q;
        
        // 插入每个人到正确的位置
        for (int i = 0; i < people.size(); i++) {
            int p = people[i][1];  // 当前位置
            q.insert(q.begin() + p, people[i]);  // 在指定位置插入
        }

        return q;
    }
};
### 关于贪心算法的讲解 贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望最终结果也是全局最优的一种算法策略[^1]。 对于某些特定问题而言,这种局部最优解能够直接导向全局最优解。然而,并不是所有的优化问题都能通过这种方法求得最精确的结果,但在很多情况下可以获得接近最优解的有效方案。 #### 示例一:最大和转换后的数组元素(Java) 考虑这样一个例子,在给定整数列表`nums`以及一个非负整数`k`的情况下,允许执行最多`k`次操作来改变任意数量的数值符号。目标是在不超过`k`次翻转的前提下最大化所有元素之和: ```java class Solution { public int largestSumAfterKNegations(int[] nums, int k) { Arrays.sort(nums); int count = 0; for (int i = 0; i < nums.length; i++) { if (k > 0 && nums[i] < 0) { nums[i] = -nums[i]; k--; } count += nums[i]; } Arrays.sort(nums); return count - ((k % 2 == 0) ? 0 : 2 * nums[0]); } } ``` 这段代码实现了上述逻辑,其中先对输入数组进行了升序排列以便优先处理负值较大的项,之后再根据剩余的操作次数决定是否调整最小正值以进一步提升总和[^2]。 #### 示例二:分配最少糖果数目 另一个典型的应用场景涉及向一群孩子分发糖果,条件是一个孩子的评分高于其左侧邻居,则该名学生应获得更多的糖果。这里采用了一种简单直观的方法——每当遇到更高的分数就增加一颗糖的数量直到遍历结束整个序列为止[^3]。 ```python def distribute_candies(ratings): n = len(ratings) candies = [1]*n for i in range(1,n): if ratings[i]>ratings[i-1]: candies[i]=candies[i-1]+1 for j in reversed(range(n-1)): if ratings[j]>ratings[j+1] and candies[j]<=candies[j+1]: candies[j]=candies[j+1]+1 return sum(candies) ``` 此Python函数展示了如何利用两次扫描过程分别从前至后和从后往前更新每个位置上的最低需求量,确保满足题目要求的同时使得总的糖果消耗达到最小化。 #### 示例三:寻找合适的起始站点完成环形路线旅行 最后来看一个更复杂的案例—解决“加油站”问题。假设存在一系列相连的服务区构成闭合路径,车辆可以在任一站加油并继续行驶直至下一个目的地。为了判断能否顺利完成一圈旅程,可以通过计算各段行程结束后所剩燃油量来进行评估。具体做法是从第一个节点开始累积净增益(`gas-cost`),只要中途未曾跌入负区间即表明可以从起点出发成功返回原点;反之则需重新选定其他候选作为新的出发点尝试验证[^4]。 ```cpp bool canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int total_tank = 0, curr_tank = 0, starting_station = 0; for (size_t i=0 ; i<gas.size() ; ++i){ total_tank += gas[i]-cost[i]; curr_tank += gas[i]-cost[i]; // If one couldn&#39;t get here, if(curr_tank < 0){ // Start over from next station. starting_station=i+1; curr_tank=0; } } return total_tank >= 0 && starting_station != gas.size(); } ``` 以上三个实例均体现了不同形式下的贪心思维模式及其应用技巧,它们共同之处在于总是倾向于做出当下看来最佳的动作,进而逐步构建出完整的解决方案框架。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值