问题 :
我在训练程序时忘记写中间保存模型了,现在我的程序使用命令 nohup python -u rf_agent_gpu_cubic.py >> output_rf_cubic.out 2>&1 & 在后台运行,我想要保存现在的模型,然后中断程序,那我之后如何接着训练
我的源代码中total_timesteps=50000,我想要变小一些,大概20000.
rl_agent.train_ppo(total_timesteps=50000)
请问这时我该怎么做,我不想前面的timesteps白训练了
解决:
一、代码中以及设置代码 :PyTorch保存模型断点以及加载断点继续训练
参考博文pytorch训练中断后,如何在之前的断点处继续训练_模型训练中途中断可以继续吗-CSDN博客
二、针对上面代码中未写断点并保存模型的代码
1. 立即保存当前模型并中断程序
由于您的代码没有自动保存中间模型的功能,我们需要手动操作。请按以下步骤:
(1) 修改源代码添加模型保存功能
在您的 rf_agent_gpu_cubic.py
文件中添加以下代码:
import signal
import sys
# 添加信号处理函数(放在训练开始前)
def save_model(signum, frame):
print("接收到中断信号,正在保存模型...")
rl_agent.save("interrupted_model") # 替换为您的模型保存方法
sys.exit(0)
signal.signal(signal.SIGINT, save_model) # 捕获Ctrl+C
signal.signal(signal.SIGTERM, save_model) # 捕获kill命令
(2) 保存当前模型并结束进程
-
查找进程ID:
bash
ps aux | grep rf_agent_gpu_cubic.py
输出类似:
text
user 12345 0.0 0.0 00000 pts/0 R+ Jul28 0:00 python -u rf_agent_gpu_cubic.py
记录PID(示例中为
12345
) -
发送中断信号:
bash
kill -SIGINT 12345 # 触发保存模型
等待约10秒后检查目录下是否生成
interrupted_model
文件