PyTorch保存模型断点以及加载断点继续训练

问题 :
我在训练程序时忘记写中间保存模型了,现在我的程序使用命令 nohup python -u rf_agent_gpu_cubic.py >> output_rf_cubic.out 2>&1 &  在后台运行,我想要保存现在的模型,然后中断程序,那我之后如何接着训练
我的源代码中total_timesteps=50000,我想要变小一些,大概20000.
rl_agent.train_ppo(total_timesteps=50000)
请问这时我该怎么做,我不想前面的timesteps白训练了

解决:

一、代码中以及设置代码 :PyTorch保存模型断点以及加载断点继续训练

参考博文pytorch训练中断后,如何在之前的断点处继续训练_模型训练中途中断可以继续吗-CSDN博客

二、针对上面代码中未写断点并保存模型的代码

1. 立即保存当前模型并中断程序

由于您的代码没有自动保存中间模型的功能,我们需要手动操作。请按以下步骤:

(1) 修改源代码添加模型保存功能

在您的 rf_agent_gpu_cubic.py 文件中添加以下代码:

import signal
import sys

# 添加信号处理函数(放在训练开始前)
def save_model(signum, frame):
    print("接收到中断信号,正在保存模型...")
    rl_agent.save("interrupted_model")  # 替换为您的模型保存方法
    sys.exit(0)

signal.signal(signal.SIGINT, save_model)  # 捕获Ctrl+C
signal.signal(signal.SIGTERM, save_model)  # 捕获kill命令
(2) 保存当前模型并结束进程
  • 查找进程ID:

    bash

    ps aux | grep rf_agent_gpu_cubic.py

    输出类似:

    text

    user  12345  0.0  0.0  00000  pts/0  R+   Jul28  0:00 python -u rf_agent_gpu_cubic.py

    记录PID(示例中为 12345

  • 发送中断信号:

    bash

    kill -SIGINT 12345  # 触发保存模型

    等待约10秒后检查目录下是否生成 interrupted_model 文件

<think>好的,我现在需要帮助用户解决在PyTorch中如何从断点处恢复训练的问题。用户提到的关键词是“断点训”,也就是在训练过程中如果中断了,如何保存模型的状态,之后能够从中断的地方继续训练,而不是从头开始。 首先,我应该回忆一下PyTorch模型保存加载的基本方法。根据用户提供的引用内容,保存模型有两种方式:一种是保存整个模型,使用torch.save(net, 'model.pkl');另一种是只保存模型参数,即state_dict。通常推荐后者,因为更灵活,尤其是当模型结构可能发生变化时,只加载参数会更安全。不过,在断点训的情况下,除了模型参数,还需要保存优化器的状态、当前的epoch、损失值等信息,这样才能完全恢复训练状态。 接下来,我需要考虑断点传需要保存哪些内容。根据引用[2]和[3],断点传不仅仅是保存模型参数,还需要保存优化器的状态、当前的epoch数、损失等。因此,在保存时,应该将这些信息一起打包成一个字典,然后保存为checkpoint文件。例如,checkpoint可以包括模型的状态字典、优化器的状态字典、当前的epoch、以及损失值等。 然后,加载的时候,需要将这些信息分别加载模型中。比如,使用torch.load加载checkpoint文件后,将模型参数加载模型实例中,优化器的状态加载到优化器实例中,然后恢复epoch和损失值,这样训练循环就可以从上次停止的地方继续了。 另外,用户提供的示例代码中,引用了保存整个模型和仅保存参数的方法。在断点训的情况下,应该使用保存参数的方法,并且要包括优化器的状态等信息。所以,正确的做法是构建一个包含所有这些信息的字典,保存为.pth或.pt文件。 接下来,我需要编写具体的步骤。首先,在训练过程中,定期保存checkpoint,比如每个epoch结束后。保存的内容包括模型state_dict、优化器state_dict、当前epoch、损失值等。然后,当需要恢复时,加载这个checkpoint,将各组件恢复到之前的状态,然后继续训练循环。 还要注意设备的问题,比如如果保存时是在GPU上,加载时可能需要指定map_location参数,特别是如果恢复时环境不同(比如从GPU转到CPU)。引用[2]提到了map_location参数,可以用来调整加载的设备位置。 现在,我需要将这些步骤整理成一个清晰的回答,分点说明保存checkpoint的步骤和恢复训练的步骤,并给出示例代码。同时,要确保使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,虽然这里可能公式不多,但要注意数学表达式的正确性。 在生成相关问题部分,应该围绕断点训的可能问题展开,比如如何选择保存频率,多GPU训练时的处理,以及如何验证恢复后的正确性。 最后,检查引用是否正确,用户提供的引用[1][2][3]都是关于PyTorch模型保存断点传的内容,需要正确引用到回答中的相关部分,比如在提到保存优化器状态时引用[2]或[3]。 总结一下,回答的结构应该是: 1. 断点训的关键要素:模型参数、优化器状态、epoch、损失等。 2. 保存checkpoint的方法,示例代码。 3. 加载checkpoint恢复训练的方法,示例代码。 4. 注意事项,如设备处理、保存频率。 5. 相关问题,如优化、多GPU、验证方法等。 确保所有技术细节准确,比如state_dict的保存加载,优化器的处理,以及如何继续训练循环。同时,代码示例要正确,符合PyTorch的语法,比如使用net.load_state_dict()和optimizer.load_state_dict()。</think>在PyTorch中实现断点训需完整保存训练状态,包括模型参数、优化器状态及训练进度。以下是具体实现方法: ### 一、断点训核心步骤 1. **保存checkpoint** ```python checkpoint = { 'epoch': current_epoch + 1, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': current_loss, 'metrics': training_metrics } torch.save(checkpoint, 'checkpoint.pth') ``` 关键要素说明: - `epoch`:当前训练轮次,用于恢复时继续计数[^3] - `state_dict`:保存模型和优化器内部参数矩阵[^1] - `loss/metrics`:记录训练指标避免信息丢失 2. **加载checkpoint** ```python def load_checkpoint(resume_path): checkpoint = torch.load(resume_path, map_location=torch.device('cuda')) net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] best_loss = checkpoint['loss'] return start_epoch, best_loss ``` `map_location`参数确保在不同设备间迁移时自动转换张量存储位置[^2] ### 二、完整训练框架示例 ```python # 初始化 net = Net() optimizer = torch.optim.Adam(net.parameters()) start_epoch = 0 # 断点恢复检测 if os.path.exists('checkpoint.pth'): start_epoch, best_loss = load_checkpoint('checkpoint.pth') # 训练循环 for epoch in range(start_epoch, total_epochs): for data in dataloader: # 前向传播与反向更新 outputs = net(data) loss = criterion(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() # 定期保存checkpoint if epoch % save_interval == 0: save_checkpoint(epoch, net, optimizer, loss) ``` ### 三、关键技术细节 1. **梯度状态保存**:优化器的`state_dict()`包含动量缓冲等中间状态,确保恢复后梯度更新连[^2] 2. **设备兼容性**:通过`torch.save(..., map_location={'cuda:0':'cuda:1'})`可实现GPU设备迁移 3. **版本控制**:建议在checkpoint中添加`torch_version`字段避免版本冲突 ### 四、最佳实践建议 - 每1-5个epoch保存一次checkpoint - 保留多个历史版本防止文件损坏 - 使用`try-except`块捕获保存异常 - 验证加载后前向传播结果一致性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值