- 博客(4)
- 收藏
- 关注
原创 神经网络与深度学习——目标检测、图像分割、RNN与NLP
优点缺点实时检测速度快准确率不如二阶段方法(如Faster R-CNN)结构简单、易于部署小目标检测不敏感端到端训练锚框需要手动设计或聚类生成对图像中每一个像素进行分类,输出每个像素所属的语义类别。与图像分类不同,语义分割的输出是与输入图像相同尺寸的“标签图”。与目标检测不同,语义分割不止提供目标位置(如框),而是提供精确到像素级别的轮廓信息。任务类型作用图像分类给整张图像一个标签目标检测给目标打框,指出位置与类别语义分割给每个像素打标签,指出每块区域属于哪个语义类别。
2025-05-25 13:50:33
2165
原创 深度学习视觉应用(简介、目标检测——YOLO模型架构)
输入图像,输出单一标签。例如判断图片中是猫还是狗。目标检测需识别图像中的目标类别与其精确位置尺寸变化大姿态多变背景复杂多目标共存目标检测作为计算机视觉中的核心任务之一,借助深度学习的发展,已实现从滑动窗口到端到端检测的巨大飞跃。YOLO系列作为代表,凭借其高效的结构和不断演化的精度,成为实用化部署中的重要工具。
2025-05-18 11:42:15
1722
原创 神经网络与深度学习——BP算法、优化方法、卷积神经网络基础
MNIST:手写数字图像,最基础的数据集;:服饰图像,增强现实性;CIFAR-10:包含10类彩色图像;ImageNet:大规模图像分类数据集;MS COCO:面向目标检测、图像分割;PASCAL VOC:早期经典目标识别数据集。模块核心内容技术关键词多层感知机XOR问题解决、误差反传MLP、激活函数、链式法则性能优化初始化、正则化、优化器卷积网络卷积、池化、深层结构实践工具PyTorch示例、常用数据集。
2025-05-07 17:49:15
1672
原创 神经网络与深度学习概述与线性回归
根据经验(数据)改善系统性能,尤其在数据量大、模式复杂的问题上优势明显。用一条直线近似输入数据和输出数据间的关系。
2025-04-28 11:00:19
603
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人