在了解一个新技术的时候,先了解这个技术为什么会诞生,Redis的诞生又是为了做什么呢?最常见的数据库MySQL不能处理吗?我们抱着问题来去学习一门新技术才能更好的进行思考和记忆。
Redis背景
在web1.0的时代,那个时候网页的访问量还是比较少的,用个高性能的服务器就可以满足需求。
到了Web2.0时代,用户量大幅度提升,产生大量用户数据,再加上手机的普及,互联网平台面临性能上的挑战。
在这个时候,CPU和IO流存储的方式就急需解决
下图是CPU的处理方式,利用缓存来存出session,速度快
而IO流,我们也有多种数据库可进行选择
通过上述的两张图,很轻松就可以得到的一个信息就是,缓存数据库的优势:
- 将session存储在内存中,降低CPU的压力
- 将常用的数据存储在内存中,减少IO的压力
NoSQL 数据库
在介绍Redis之前,还需要介绍一个定义。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
不遵循SQL标准。
不支持ACID。
远超于SQL的性能。
**NoSQL适用场景 **
- 对数据高并发的读写
- 海量数据的读写
- 对数据高可扩展性的
NoSQL不适用场景
- 需要事务支持
- 基于sql的结构化查询存储,处理复杂的关系,需要即席查询。
常见的数据库
- Memcache
- 很早出现的NoSQL数据库
- 数据存在内存中,一般不持久化
- 支持简单key-value模式
- 一般作为缓存数据库辅助持久化的数据库
- MongoDB
- 高性能、开源、模式自由的文档型数据库
- 数据存在内存,若内存不足,把不常用的数据保存在硬盘
- 也是key-value模式,但是对value提供了丰富的查询功能
- 支持二进制数据及大型对象
- MySQL(行数据库)
- 这个用的比较多,就不说了
- HBase(列数据库)
- 它是Hadoop项目中的数据库,常用在需要对大量数据进行随机、实时的读写操作的场景。擅长处理非常庞大的表,可以用普通计算机处理超过10亿行数据或数百万列元素的数据。
- Cassandra
- 是Apache下的开源NoSQL数据库
- 擅长对写入及读取操作进行规模调整
- 简化了各集群的创建和扩展流程
- Neo4j
- 图关系型数据库
- 主要应用,社会关系、公共交通网络、地图及网络拓扑图
那么接下来该Redis的介绍了
- Redis是一个开源的key-value存储系统。
- 和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。
- 这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。
- 在此基础上,Redis支持各种不同方式的排序。
- 与memcached一样,为了保证效率,数据都是缓存在内存中。
- 区别的是Redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件。
- 并且在此基础上实现了master-slave(主从)同步。
如果想快速试一试Redis的操作命令的话,建议直接下载Window版即可,解压即用。Linux安装Redis可以抽空练习一下,以便项目部署。