吴恩达机器学习课后作业-06支持向量机(SVM)

线性可分SVM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题目

在这里插入图片描述
数据分布
在这里插入图片描述

绘制决策边界

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from scipy.optimize import minimize
import pandas as pd
from sklearn.svm import SVC

def plot_data():
    plt.scatter(x[:,0],x[:,1],c = y.flatten(), cmap ='jet')
    plt.xlabel('x1')
    plt.ylabel('y1')



"""
绘制决策边界
"""

def plot_boundary(model):
    x_min,x_max =-0.5,4.5
    y_min,y_max =1.3,5
    xx,yy = np.meshgrid(np.linspace(x_min,x_max,500),
    np.linspace(y_min,y_max,500))
    z = model.predict(np.c_[xx.flatten(),yy.flatten()])
    zz = z.reshape(xx.shape)
    plt.contour(xx,yy,zz)

data=sio.loadmat("E:/学习/研究生阶段/python-learning/吴恩达机器学习课后作业/code/ex6-SVM/data/ex6data1.mat")

x,y=data['X'],data['y']
#
plot_data()
# plt.show()

svc1 = SVC(C=1,kernel='linear')
svc1.fit(x,y.flatten())
svc1.predict(x)
print(svc1.score(x,y.flatten()))
plot_boundary(svc1)
plt.show()


在这里插入图片描述

改变C,观察决策边界


svc100 = SVC(C=100,kernel='linear')
svc100.fit(x,y.flatten())
svc100.predict(x)
print(svc100.score(x,y.flatten()))



plot_boundary(svc100)
plt.show()

在这里插入图片描述

代码

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
from scipy.optimize import minimize
import pandas as pd
from sklearn.svm import SVC

def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值