首先提出欧拉函数phi[x] 的定义:小于x且与x互质的正整数的个数。
例如: phi[12]=4, 因为 1,5,7,11与12互质,特别的phi[1]=1。
欧拉函数的性质:
1 若x 是质数,则phi[xn]=xn−1(x−1)phi[x^n]=x^{n-1}(x-1)phi[xn]=xn−1(x−1)
2 若a|x (表示a 是x的因数) , 则 phi[ax]=a∗phi[x]phi[ax]=a*phi[x]phi[ax]=a∗phi[x]
3 若a, b 互质, 则phi[a]∗phi[b]=phi[a∗b]phi[a]*phi[b]=phi[a*b]phi[a]∗phi[b]=phi[a∗b]
证明:1 对于小于x且与x互质的数有1,2,3…x-1。对于xnx^nxn 有
1,2,3......x−1.1, 2, 3......x-1.1,2,3......x−1.
1+x,2+x,3+x,....(x−1)+x1+x, 2+x, 3+x, ....(x-1)+x1+x,2+x,3+x,....(x−1)+x
1+2x,2+2x,3+2x.....(x−1)+2x1+2x, 2+2x, 3+2x.....(x-1)+2x1+2x,2+2x,3+2x.....(x−1)+2x
…
1+xn−2∗x,2+xn−2∗x,3+xn−2∗x,......(x−1)+xn−2∗x1+x^{n-2}*x, 2+x^{n-2}*x, 3+x^{n-2}*x,......(x-1)+x^{n-2}*x1+xn−2∗x,2+xn−2∗x,3+xn−2∗x,......(x−1)+xn−2∗x
所以总共xn−1∗(x−1)x^{n-1}*(x-1)xn−1∗(x−1)个则 phi[xn]=xn−1∗(x−1)phi[x^n]=x^{n-1}*(x-1)phi[xn]=xn−1∗(x−1)
2: 假设phi[x]个整数为分别, d1,d2,d3....dphi[x]d_1, d_2, d_3....d_{phi[x]}d1,d2,d3....dphi[x]
则phi[ax]个整数分别为:
d1,d2,d3,......dphi[x]d_1, d_2, d_3, ......d_{phi[x]}d1,d2,d3,......dphi[x]
d1+x,d2+x,d3+x,.......dphi[x]+xd_1+x, d_2+x, d_3+x, .......d_{phi[x]}+xd1+x,d2+x,d3+x,.......dphi[x]+x
…
d1+(a−1)∗x,d2+(a−1)∗x,d3+(a−1)∗x,......dphi[x]+(a−1)∗xd_1+(a-1)*x, d_2+(a-1)*x , d_3+(a-1)*x,......d_{phi[x]}+(a-1)*xd1+(a−1)∗x,d2+(a−1)∗x,d3+(a−1)∗x,......dphi[x]+(a−1)∗x
3: 因为记起来更方便就不在这证明了
欧拉函数的计算方法:
将x质因数分解得到 x=p1k1p2k2p3k3......x=p^{k1}_1p^{k2}_2p^{k3}_3......x=p1k1p2k2p3k3......
phi[x]=p1k1−1(p1−1)∗p2k2−1(p2−1)......phi[x]=p^{k1-1}_1(p_1-1)*p^{k2-1}_2(p_2-1)......phi[x]=p1k1−1(p1−1)∗p2k2−1(p2−1)......
==>phi[x]=x∗(p1−1)/p1∗(p2−1)/p2......phi[x]=x*(p_1-1)/p_1*(p_2-1)/p_2......phi[x]=x∗(p1−1)/p1∗(p2−1)/p2......
计算1 到n的欧拉函数的代码如下
int phi(int n)
{
for(int i=1;i<=n;i++) phi[i]=i;
for(int i=1;i<=n;i++)
{
if(phi[i]=i)
{
for(int j=2*i;j<=n;j+=i)
phi[j]=phi[j]/i*(i-1);
}
}
}