ACM-欧拉函数

首先提出欧拉函数phi[x] 的定义:小于x且与x互质的正整数的个数。
例如: phi[12]=4, 因为 1,5,7,11与12互质,特别的phi[1]=1。

欧拉函数的性质:
1 若x 是质数,则phi[xn]=xn−1(x−1)phi[x^n]=x^{n-1}(x-1)phi[xn]=xn1(x1)
2 若a|x (表示a 是x的因数) , 则 phi[ax]=a∗phi[x]phi[ax]=a*phi[x]phi[ax]=aphi[x]
3 若a, b 互质, 则phi[a]∗phi[b]=phi[a∗b]phi[a]*phi[b]=phi[a*b]phi[a]phi[b]=phi[ab]

证明:1 对于小于x且与x互质的数有1,2,3…x-1。对于xnx^nxn
1,2,3......x−1.1, 2, 3......x-1.1,2,3......x1.
1+x,2+x,3+x,....(x−1)+x1+x, 2+x, 3+x, ....(x-1)+x1+x,2+x,3+x,....(x1)+x
1+2x,2+2x,3+2x.....(x−1)+2x1+2x, 2+2x, 3+2x.....(x-1)+2x1+2x,2+2x,3+2x.....(x1)+2x

1+xn−2∗x,2+xn−2∗x,3+xn−2∗x,......(x−1)+xn−2∗x1+x^{n-2}*x, 2+x^{n-2}*x, 3+x^{n-2}*x,......(x-1)+x^{n-2}*x1+xn2x,2+xn2x,3+xn2x,......(x1)+xn2x

所以总共xn−1∗(x−1)x^{n-1}*(x-1)xn1(x1)个则 phi[xn]=xn−1∗(x−1)phi[x^n]=x^{n-1}*(x-1)phi[xn]=xn1(x1)
2: 假设phi[x]个整数为分别, d1,d2,d3....dphi[x]d_1, d_2, d_3....d_{phi[x]}d1,d2,d3....dphi[x]
则phi[ax]个整数分别为:
d1,d2,d3,......dphi[x]d_1, d_2, d_3, ......d_{phi[x]}d1,d2,d3,......dphi[x]
d1+x,d2+x,d3+x,.......dphi[x]+xd_1+x, d_2+x, d_3+x, .......d_{phi[x]}+xd1+x,d2+x,d3+x,.......dphi[x]+x

d1+(a−1)∗x,d2+(a−1)∗x,d3+(a−1)∗x,......dphi[x]+(a−1)∗xd_1+(a-1)*x, d_2+(a-1)*x , d_3+(a-1)*x,......d_{phi[x]}+(a-1)*xd1+(a1)x,d2+(a1)x,d3+(a1)x,......dphi[x]+(a1)x
3: 因为记起来更方便就不在这证明了

欧拉函数的计算方法:
将x质因数分解得到 x=p1k1p2k2p3k3......x=p^{k1}_1p^{k2}_2p^{k3}_3......x=p1k1p2k2p3k3......
phi[x]=p1k1−1(p1−1)∗p2k2−1(p2−1)......phi[x]=p^{k1-1}_1(p_1-1)*p^{k2-1}_2(p_2-1)......phi[x]=p1k11(p11)p2k21(p21)......

==>phi[x]=x∗(p1−1)/p1∗(p2−1)/p2......phi[x]=x*(p_1-1)/p_1*(p_2-1)/p_2......phi[x]=x(p11)/p1(p21)/p2......
计算1 到n的欧拉函数的代码如下

int phi(int n)
{
	for(int i=1;i<=n;i++) phi[i]=i;
	for(int i=1;i<=n;i++)
	{
		if(phi[i]=i)
			{
				for(int j=2*i;j<=n;j+=i)
					phi[j]=phi[j]/i*(i-1);
			}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Winlucky@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值