动态规划之计数类DP

🐏动态规划之计数类DP🐏

🐏写在前面🐏

之前讲过背包问题线性DP区间DP,不知道大家忘了吗,这次是计数类DP
看完本篇文章觉得不错的话记得点赞👍,收藏⭐,还有问题也可以评论留言💬

这篇文章可能有点水,因为最近挺多事的,不能保证每篇都是高质量的了,但小🐏又不想断了每天一篇博客,所以等我有时间了,我一定会优化内容的,如果有问题的可以评论留言哦。

🐏石子合并🐏

在这里插入图片描述
在这里插入图片描述
老规矩,先画图。

思路:把1,2,3, … n分别看做n个物体的体积,这n个物体均无使用次数限制,问恰好能装满总体积为n的背包的总方案数(完全背包问题变形)

初值问题:
求最大值时,当都不选时,价值显然是 0
而求方案数时,当都不选时,方案数是 1(即前 i 个物品都不选的情况也是一种方案),所以需要初始化为 1
即:for (int i = 0; i <= n; i ++) f[i][0] = 1;
等价变形后: f[0] = 1

状态计算:

f[i][j]表示前i个整数(1,2…,i)恰好拼成j的方案数
求方案数:把集合选0个i,1个i,2个i,…全部加起来
f[i][j] = f[i - 1][j] + f[i - 1][j - i] + f[i - 1][j - 2 * i] + …;
f[i][j - i] = f[i - 1][j - i] + f[i - 1][j - 2 * i] + …;
因此 f[i][j]=f[i−1][j]+f[i][j−i]; (这一步类似完全背包的推导)

朴素做法

// f[i][j] = f[i - 1][j] + f[i][j - i]
#include <bits/stdc++.h>

using namespace std;

const int N = 1e3 + 7, mod = 1e9 + 7;

int f[N][N];

int main() {
   
   
    int n;
    cin >> n;

    for (int i 
### C++ 中使用动态规划进行路径计数 在解决路径计数问题时,动态规划是一种非常有效的方法。对于从二维数组的左上角走到右下角的问题,可以通过构建一个同样大小的二维表来存储到达每个位置的不同路径数量。 #### 动态规划解法的核心思路 创建一个 `dp` 表格,其中 `dp[i][j]` 表示从起点 (0, 0) 到达坐标 `(i, j)` 的不同路径数目。由于只能向下或向右走,则有: - 当位于第一行时 (`i=0`) ,只有一种方式进入该列; - 同样地,在最左侧的一列里(`j=0`)也仅存在一条路线可抵达各单元格; - 对于其他任意一点`(i,j)`而言,可以从上方(i−1,j) 或者左边(i,j−1) 来到这里[^2]。 因此状态转移方程如下所示: \[ dp[i][j]=\begin{cases} 1 & \text{if } i==0 \text{ or } j==0 \\ dp[i-1][j]+dp[i][j-1] & \text{otherwise} \end{cases}\] 下面是具体的实现代码: ```cpp #include <iostream> using namespace std; int uniquePaths(int m, int n){ // 创建并初始化DP表格 int dp[m][n]; for(int i = 0; i<m ; ++i){ for(int j = 0;j<n;++j){ if(i == 0 || j == 0){ dp[i][j] = 1; } else{ dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } } return dp[m-1][n-1]; } // 测试函数 void test(){ cout << "The number of paths from top-left to bottom-right is: "; cout<<uniquePaths(3,7)<<endl; } int main() { test(); return 0; } ``` 此程序定义了一个名为 `uniquePaths()` 的功能,它接收两个参数——网格的高度和宽度,并返回可能的独特路径总数。测试部分展示了如何调用这个函数以及预期的结果输出。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小羊努力变强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值