Leetcode每日一题386. 字典序排数

写在前面

📖本篇内容:Leetcode每日一题386. 字典序排数


📑 文章专栏:leetcode每日一题《打卡日常》


⭐算法仓库:小🐏的变强之路

题目

给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。

你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。

示例 1:

输入:n = 13
输出:[1,10,11,12,13,2,3,4,5,6,7,8,9]

示例 2:

输入:n = 2
输出:[1,2]

提示:

1 <= n <= 5 * 104

📝思路📝

深度优先搜索 题目要求设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法,因此我们不能使用直接排序的方法。

那么对于一个整数 number,它的下一个字典序整数对应下面的规则:
尝试在 number 后面附加一个零,即 number×10,如果 number×10≤n,那么说明 number×10 是下一个字典序整数

if (number * 10 <= n) {
                number *= 10;

如果 number mod 10=9 或 number+1>n,那么说明末尾的数位已经搜索完成,退回上一位,然后继续判断直到 number mod 10 ! =9 且 number+1≤n 为止,那么 number+1 是下一个字典序整数。

else {
                while (number % 10 == 9 || number + 1 > n) {
                    number /= 10;
                }
                number++;
            }

字典序最小的整数为 number=1,我们从它开始,然后依次获取下一个字典序整数,加入结果中,结束条件为已经获取到 n 个整数。

⭐代码实现⭐

class Solution {
public:
    vector<int> lexicalOrder(int n) {
        vector<int> ret(n);
        int number = 1;
        for (int i = 0; i < n; i++) {
            ret[i] = number;
            if (number * 10 <= n) {
                number *= 10;
            } else {
                while (number % 10 == 9 || number + 1 > n) {
                    number /= 10;
                }
                number++;
            }
        }
        return ret;
    }
};


复杂度分析

时间复杂度:O(n)
空间复杂度:O(1)。返回值不计入空间复杂度。

写在最后

觉得本篇文章不错的话记得点赞👍,收藏⭐,还有问题也可以评论留言💬
你的支持将是我继续创作的最大动力❤️❤️❤️
由于作者水平有限,如有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小羊努力变强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值