写在前面
📖本篇内容:Leetcode每日一题386. 字典序排数
📑 文章专栏:leetcode每日一题《打卡日常》
⭐算法仓库:小🐏的变强之路
题目
给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。
你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。
示例 1:
输入:n = 13
输出:[1,10,11,12,13,2,3,4,5,6,7,8,9]
示例 2:
输入:n = 2
输出:[1,2]
提示:
1 <= n <= 5 * 104
📝思路📝
深度优先搜索 题目要求设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法,因此我们不能使用直接排序的方法。
那么对于一个整数 number,它的下一个字典序整数对应下面的规则:
尝试在 number 后面附加一个零,即 number×10,如果 number×10≤n,那么说明 number×10 是下一个字典序整数
if (number * 10 <= n) {
number *= 10;
如果 number mod 10=9 或 number+1>n,那么说明末尾的数位已经搜索完成,退回上一位,然后继续判断直到 number mod 10 ! =9 且 number+1≤n 为止,那么 number+1 是下一个字典序整数。
else {
while (number % 10 == 9 || number + 1 > n) {
number /= 10;
}
number++;
}
字典序最小的整数为 number=1,我们从它开始,然后依次获取下一个字典序整数,加入结果中,结束条件为已经获取到 n 个整数。
⭐代码实现⭐
class Solution {
public:
vector<int> lexicalOrder(int n) {
vector<int> ret(n);
int number = 1;
for (int i = 0; i < n; i++) {
ret[i] = number;
if (number * 10 <= n) {
number *= 10;
} else {
while (number % 10 == 9 || number + 1 > n) {
number /= 10;
}
number++;
}
}
return ret;
}
};
复杂度分析
时间复杂度:O(n)
空间复杂度:O(1)。返回值不计入空间复杂度。
写在最后
觉得本篇文章不错的话记得点赞👍,收藏⭐,还有问题也可以评论留言💬
你的支持将是我继续创作的最大动力❤️❤️❤️
由于作者水平有限,如有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!