自动驾驶传感器:GNSS+IMU组合导航

GNSS简介

系统介绍

GNSS全称:全球导航卫星系统(Global Navigation Satellite System, GNSS),是指一系列在地球轨道上运行的空间星座,它们通过向地球表面及近地空间区域发射无线电信号来提供定位、导航和授时服务。GNSS技术使得各类用户在全球范围内实现高精度的三维位置、速度和时间信息的获取,广泛应用于交通运输、测绘、农业、气象预报、科学研究、军事行动等多个领域

1.美国全球定位系统(Global Positioning System, GPS)

GPS的工作原理基于测量从卫星发射到接收器的信号传播时间,进而计算出接收器的准确位置。

2.俄罗斯格洛纳斯系统(Global Navigation Satellite System, GLONASS)

作为与GPS竞争的系统,GLONASS由俄罗斯联邦航天局运营,同样由24颗卫星组成,确保全球覆盖。GLONASS的设计原则与GPS类似,但使用不同的频段和轨道布局。

3.欧洲伽利略系统(Galileo)

伽利略系统是欧盟开发并独立运行的全球卫星导航系统,旨在提高定位服务的准确性,并减少对其他系统的依赖。

完全投入运行后,伽利略系统将拥有超过20颗卫星,提供更高精度的服务,尤其是在城市峡谷和山区等复杂环境中。

4.中国北斗卫星导航系统(BeiDou Navigation Satellite System, BDS)

北斗系统是中国自行研制的全球卫星导航系统,已经完成了全球组网,为全球用户提供服务。
北斗系统除了提供定位、导航和授时功能外,还具备独特的短报文通信服务。


每个GNSS系统都包含空间段(卫星星座)、地面控制段(主控站、注入站、监测站等)和用户段(各种类型的接收机)。用户通过接收来自至少四颗卫星的信号,并利用信号到达时间差解算算法(如多普勒效应、测距差分法等),从而计算自身的精确三维坐标以及其他相关信息。随着各系统兼容与互操作性的提升,现代GNSS接收机往往能够同时接收多个系统信号,以提高定位的可靠性和精度。

组成

### GNSSIMU 组合导航概述 #### 实现原理 GNSS(全球导航卫星系统)和IMU(惯性测量单元)组合导航是一种集成两种不同传感器数据的技术,旨在提高定位精度和鲁棒性。IMU能够提供连续的姿态角、加速度信息,而GNSS则提供了绝对的位置坐标。两者结合可以通过互补特性克服各自的局限。 具体来说,IMU利用内部的陀螺仪和加速计实时感知载体运动状态并计算相对位移;然而随着时间推移会累积误差。相比之下,GNSS虽然能给出精确地理位置但受制于视界内可见卫星数量等因素影响,在某些环境中可能失效或不稳定。因此,通过卡尔曼滤波器或其他算法将这两种不同类型的数据融合起来,可以在保持较高更新率的同时减少长期漂移问题[^1]。 ```python import numpy as np def kalman_filter(x, P, measurement): """ A simple implementation of Kalman Filter to fuse GNSS and IMU data. Parameters: x (numpy array): State vector [position; velocity]. P (numpy matrix): Covariance matrix. measurement (float): Measurement from sensor. Returns: tuple: Updated state estimate and covariance. """ # Prediction update equations F = np.eye(2) # Transition Matrix B = np.zeros((2, 1)) # Control Input Model Q = np.diag([0.1, 0.1]) ** 2 # Process Noise Covariance u = np.array([[0]]) # No control input applied here x_pred = F @ x + B @ u # Predicted state estimation P_pred = F @ P @ F.T + Q # Predicted error covariance # Measurement Update Equations H = np.array([[1., 0.]]) # Observation model R = np.atleast_2d(0.5) # Measurement noise covariance y = measurement - H @ x_pred # Innovation or residual between predicted & actual measurements S = H @ P_pred @ H.T + R # Residual covariance K = P_pred @ H.T / S # Optimal Kalman gain calculation x_estimated = x_pred + K * y # Posteriori state estimate I_KH = np.eye(len(K)) - K @ H P_updated = (I_KH @ P_pred).dot(I_KH.T) + K @ R @ K.T # Posteriori error covariance return x_estimated, P_updated ``` #### 应用场景 这种组合方式特别适用于需要高可靠性和准确性定位的应用场合: - 自动驾驶汽车:确保车辆即使在隧道、高楼林立的城市峡谷等地形条件下也能维持稳定可靠的路径追踪性能; - 室内外无缝切换设备:如无人机配送服务中跨越建筑物进出室内室外环境时仍可获得连贯一致的方向指引; - 特殊作业机器人:执行危险区域探测任务期间依靠多源传感增强抗干扰能力和自主决策水平[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值