- 博客(1)
- 收藏
- 关注
原创 时空数据建模的跨节点联邦图神经网络:KDD21 Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling
前言联邦学习(FL)虽然已经被广泛研究,但是对复杂的时空依赖关系进行建模以提高预测能力仍然是一个开放的问题。此外目前最优的时空预测模型假定对数据的访问不受限制,忽略了对数据共享的限制。基于此,本文提了一个基于图联邦学习的时空数据模型 Cross-Node Federated Graph Neural Network (CNFGNN),该模型在跨节点联邦学习的约束下,使用基于图神经网络(GNN)的架构对底层图结构进行编码,属于结构化联邦的一种,每个本地模型利用私有数据进行学习,并保持分散性。CNFGNN
2022-05-08 15:28:11
1568
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人