- 博客(29)
- 收藏
- 关注
原创 自编码器——数据降维及特征提取
自编码器(Autoencoder)是一种无监督学习的神经网络模型,主要用于数据的降维特征提取和数据重构。将输入数据压缩为一个低维的表示(也称为“编码”或“隐含特征”),这部分网络逐渐减少输入的维度,从而提取数据的关键特征。从编码器生成的低维表示中重构原始数据,解码器的目标是使得重构的输出尽量接近原始输入。
2025-02-28 19:34:18
1404
原创 深入理解数据归一化:原理、方法和应用
归一化是数据预处理中的一个重要步骤,能够显著提高模型的训练速度和稳定性。选择适合的数据归一化方法可以帮助我们更好地处理数据,提高模型的精度。不同场景下可以选择不同的归一化方法,根据数据的分布特点进行选择。希望本篇博客能够帮助你更好地理解数据归一化,并在实际项目中灵活应用!
2025-02-26 16:28:45
1236
原创 深入理解PPO算法:从原理到实现
PPO是一种简单且有效的策略优化算法,通过限制策略更新的范围,实现了稳定和高效的策略优化。它不仅在计算上更简单,还在多个复杂任务中取得了优异的表现。随着强化学习的不断发展,PPO已成为解决复杂决策问题的一项强大工具,未来可能会被应用到更多实际场景中。
2025-02-25 18:57:00
3422
原创 解锁无限可能:DeepSeek-V3——你的AI超级伙伴
引言:当AI成为你的“第二大脑”你是否曾幻想拥有一个无所不知的伙伴?它能10秒生成周报5分钟调试代码,甚至在你灵感枯竭时,为你续写跌宕起伏的小说剧情?,由中国顶尖AI公司深度求索(DeepSeek)打造,正是这样一个全能型AI助手——它不仅是工具,更是你突破能力边界的“外挂大脑”。一、我是谁?——重新定义AI助手的价值(配图建议:科技感线条交织的AI形象,背景为多场景切换动效)我是,诞生于千亿级参数大模型与多模态技术融合的下一代AI助手。“让每个人都能享受技术平权”。无需学习成本。
2025-02-21 16:55:59
2173
原创 全面解析 Transformer:改变深度学习格局的神经网络架构
Transformer 是一种基于"注意力机制(Attention Mechanism)"的神经网络架构,主要用于处理序列数据。与传统的循环神经网络(RNN)不同,Transformer 通过并行计算和全局注意力机制,极大提升了模型的效率和性能。Transformer 的设计理念基于简单但高效的注意力机制,其并行化特性和强大的表征能力使其成为现代深度学习的核心模型。从 NLP 到 CV,再到多模态任务,Transformer 正在推动 AI 的新一轮变革。
2024-12-04 18:44:58
9771
原创 深入傅里叶级数与傅里叶变换:从基础到应用
傅里叶分析为我们提供了一种理解信号频率结构的强大工具。从傅里叶级数到傅里叶变换,再到快速傅里叶变换(FFT),其理论与应用紧密结合,对现代科学技术的发展意义非凡。如果你对信号处理、数据分析或工程计算感兴趣,傅里叶分析是必须掌握的基础工具。希望本文能帮助你对傅里叶分析有更深入的理解!如果有问题或想法,欢迎在评论区讨论!
2024-12-03 22:29:40
2810
1
原创 多头注意力机制:从原理到应用的全面解析
多头注意力机制是Transformer架构的核心组件之一,它是对单一注意力机制的扩展。其核心思想是:通过多个不同的“头”并行地学习数据的不同子空间的相关性,从而提高模型的表达能力。多头注意力机制是现代深度学习的重要基石,其通过并行化的方式增强了注意力机制的表达能力和效率。在Transformer模型中的成功应用,使其成为众多前沿任务中的标配。无论是理论研究还是实际开发,多头注意力机制都值得深入理解和探索。d_k。
2024-11-29 22:07:12
2718
原创 探索空间自相关:揭示地理数据中的隐藏模式
空间自相关用来衡量地理空间中数据值的相似性或相关性。“相邻地区的事物往往更相似”。这一思想来源于托布勒的第一地理学定律(Tobler's First Law of Geography):“一切事物都是相关的,但近的事物比远的事物更相关。空间自相关为我们揭示了数据在空间上的内在结构和规律,通过全局和局部指标,我们可以洞察区域之间的相似性或差异性。在城市规划、环境监测和社会经济研究中,空间自相关分析提供了科学的依据。Python 的 pysal库使得空间分析的实现变得简单直观。
2024-11-27 19:18:52
2436
原创 深入理解注意力机制(Attention Mechanism)
注意力机制的核心思想是赋予输入数据不同的权重,强调对结果最有贡献的部分,而弱化次要部分。这种机制特别适合于处理序列数据(如文本和时间序列),以及高维数据(如图像)。注意力机制的出现不仅解决了传统方法在处理复杂依赖关系时的瓶颈,还在多个领域引发了深远的影响。从最初的Bahdanau注意力到当前的Transformer架构,它的演进展现了技术的巨大潜力。未来,随着计算硬件的进步和算法的优化,注意力机制将继续在更多场景中发挥重要作用。希望本文帮助你更好地理解注意力机制的本质及其实现。
2024-11-26 19:37:07
2179
原创 蒙特卡洛方法:概率与随机性的强大工具
蒙特卡洛方法(Monte Carlo Method)是一种基于随机采样的数值计算方法,广泛应用于概率统计、优化、模拟和机器学习等领域。它因二战期间解决复杂数学问题而得名,用以向摩纳哥的著名赌场致敬。
2024-11-19 16:03:12
4169
原创 探索线性插值以外的插值方法
插值方法广泛应用于数据处理和科学计算中,不同插值方法适合不同的数据类型和应用场景。在上一篇博客中,我们讨论了线性插值,它通过在两个已知数据点之间绘制一条直线来估计中间值。然而,对于非线性数据或复杂的函数关系,线性插值的准确性可能不足。本篇博客将介绍几种其他常用的插值方法,包括多项式插值、样条插值、以及拉格朗日插值等,帮助你更灵活地处理数据。
2024-11-15 15:30:53
1866
原创 探索线性插值:从原理到应用
插值是数学和数据处理中的常用技术,通过插值可以在已知数据点之间估计未知值。线性插值(Linear Interpolation)是最简单的插值方法之一,它在两个已知点之间绘制一条直线来预测中间值。在这篇博客中,我们将介绍线性插值的基本原理、数学公式,并通过Python代码展示如何在实际应用中使用线性插值。
2024-11-14 15:55:56
2469
原创 主动学习:让模型学得更快更精准
在机器学习中,训练数据的数量和质量对于模型的性能至关重要。然而,标签数据的获取往往耗时、昂贵,尤其在医学影像分析、无人驾驶等领域标注代价更高。主动学习(Active Learning)提供了一种更高效的学习方法:通过主动选择数据来标注,让模型以较少的数据获得更高的精度。在本篇博客中,我们将深入探讨主动学习的概念、常用方法及应用场景。
2024-11-13 10:42:47
1927
原创 深入理解数据归一化:原理、方法和应用
数据归一化(Normalization)是一种常见的数据预处理方法,尤其在机器学习和深度学习中尤为重要。归一化的主要目的是调整数据的分布,以加速模型的训练并提高准确性。在这篇博客中,我们将深入探讨归一化的概念、常用方法及其应用场景。
2024-11-12 09:24:43
2590
原创 BP神经网络——从原理到实现
BP(Backpropagation,反向传播)是一种用于神经网络训练的算法,通过计算损失函数相对于每个权重的梯度,并调整网络权重以最小化误差。BP算法是监督学习的核心优化方法之一,广泛应用于深度学习和机器学习模型的训练。
2024-11-07 16:03:01
1996
原创 深入理解PPO算法:从原理到实现
在强化学习领域,PPO(Proximal Policy Optimization,近端策略优化)是一种广泛使用且表现优异的算法。它由OpenAI提出,旨在解决策略优化中不稳定和样本效率低的问题。与传统策略梯度方法相比,PPO稳定性更强,且在诸多任务上表现优异。
2024-11-06 16:11:08
5911
2
原创 深度强化学习:从理论到应用
深度强化学习(Deep Reinforcement Learning,DRL)是近年来人工智能领域的热门话题。它结合了深度学习和强化学习的优势,不仅可以在复杂的环境中自主学习策略,还能在无人驾驶、金融市场分析、游戏AI等多个领域展示强大的性能。
2024-11-05 19:34:10
2007
原创 多臂老虎机——入门强化学习
多臂老虎机(Multi-Armed Bandit,MAB)问题是强化学习的经典入门例子,也是理解探索与利用(exploration-exploitation)平衡的重要案例。
2024-11-03 16:45:44
1893
原创 Q-learning原理及代码实现
Q-learning是一种基于值的强化学习算法,用于在不依赖环境模型的情况下学习最优策略。它的目标是通过学习动作-状态对的价值(即Q值),找到使得累计奖励最大的策略。
2024-10-31 20:43:15
1680
原创 浅谈——深度学习和马尔可夫决策过程
深度学习是一种机器学习方法,它通过模拟大脑的神经网络来进行数据分析和预测。马尔可夫决策过程(MDP)是一种数学框架,用于描述决策过程,特别是在环境中存在不确定性的情况下。
2024-10-30 19:53:02
1333
原创 DQN——深度Q网络
DQN(Deep Q-Network)是一种深度强化学习算法,结合了 Q-learning 和神经网络,用于解决复杂的决策问题。它在游戏和控制任务中取得了出色的效果。DQN 的关键是利用神经网络来近似 Q 值函数,使得算法在较高维度的状态空间中也能有效工作。以下是 DQN 的原理概述及实现代码示例。
2024-10-29 20:48:50
1509
原创 PSO——粒子群优化算法
粒子群优化(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,灵感来自鸟群或鱼群的觅食行为。PSO通过在多维搜索空间中移动一组“粒子”(代表潜在解)来找到最优解。每个粒子都有自己的位置和速度,逐步向最佳解靠近。PSO算法常用于求解复杂的优化问题,具有全局搜索能力和计算效率较高的特点。
2024-10-27 21:05:55
3208
原创 LSTM——长短期记忆神经网络
LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN),用于解决长序列中的长期依赖问题。它通过引入门机制,控制信息的流入、保留和输出,从而在避免梯度消失或爆炸的情况下捕获较长序列的依赖关系。
2024-10-26 22:32:07
1661
原创 PCA——主成分分析
PCA(主成分分析,Principal Component Analysis)是一种用于降维和特征提取的统计方法。其基本思想是将原始数据投影到一个新的坐标系上,使得数据在新坐标系中的前几个坐标轴上具有最大的方差。广泛用于信号处理、图像识别、机器学习和数据分析等领域。其主要目标是通过减少数据的维度来简化问题,同时尽可能保留原始数据中的重要信息。
2024-10-25 14:23:44
2124
原创 多变量互信息——时空特征捕获
多变量互信息(Multivariate Mutual Information, MMI)是对多个变量之间的相互依赖关系进行度量的扩展,它不仅捕捉两个变量之间的信息共享,还能衡量多个变量如何共同提供信息。这对于捕捉空间点之间的相关性非常有用,尤其在多维时空数据预测中,空间点的组合信息可能比单个点的互信息更具预测价值。
2024-10-24 08:21:30
1496
原创 自编码器——数据降维及特征提取
自编码器(Autoencoder)是一种无监督学习的神经网络模型,主要用于数据的降维、特征提取和数据重构。将输入数据压缩为一个低维的表示(也称为“编码”或“隐含特征”),这部分网络逐渐减少输入的维度,从而提取数据的关键特征。从编码器生成的低维表示中重构原始数据,解码器的目标是使得重构的输出尽量接近原始输入。
2024-10-23 18:30:00
2826
原创 互信息——特征相关性
互信息(Mutual Information, MI)是衡量两个随机变量之间相互依赖程度的指标。它反映了一个变量包含关于另一个变量的信息量。互信息的定义基于信息熵,它用来表示不确定性的减少。
2024-10-23 11:07:11
2024
原创 牛顿法在优化中的应用——利用 Hessian 矩阵信息指导搜索
牛顿法通过二阶泰勒展开式近似函数,在每次迭代中利用梯度和 Hessian 矩阵来更新点 x。其更新公式为:它能快速收敛,但由于 Hessian 矩阵的计算成本较高,在高维优化问题中可能不适合直接使用。
2024-10-22 21:09:21
1314
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人