简单点理解 SVM(支持向量机)

本文深入探讨了支持向量机(SVM)的基本概念,包括最大间隔法、软间隔、SMO算法以及核函数的应用。SVM是一种二分类模型,通过寻找最大间隔的超平面进行分类。当面临线性不可分问题时,SVM利用核函数将数据映射到高维空间,实现非线性分类。文章还介绍了Python中实现SVM的示例,涉及线性、高斯径向基和Sigmoid核函数,并展示了如何绘制分类结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、SVM简介

支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。可能不好理解,那我们来举个例子吧

根据体重判断小鼠是否肥胖,首先得找到一个阈值,这个阈值怎么找呢?按从小到大的顺序排列后找到间隔最大的俩只小鼠取它们的中间体重,这个就是阈值。

但是也可能出现误差

 

 (其中粉色代表肥胖,绿色代表不肥胖)这个图中个别案例不符合最大间隔法,所以这时就需要用到Sort Margin,如图

 2、SVM算法简介

 2.1、最大间隔法介绍:

                   

具体方法如下:

每个支持向量到超平面的距离可以写为:

由上述 

 可以得到 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值