- 博客(6)
- 收藏
- 关注
原创 联邦学习框架FedML自学----第二篇----整体简介
模块名作用core核心模块,封装所有低层通信机制:MPI、NCCL、MQTT、gRPC、PyTorch RPC;提供拓扑管理、安全隐私相关接口;所有算法都依赖此核心模块。(在本地模拟测试中,多用mpi多进程并行;在真实联邦学习中常用mqtt进行通信)data提供默认数据集及自定义数据模板,方便快速入门model模型库,内含各种可复用的模型结构device计算资源管理模块,例如设备发现、资源调度等simulation联邦学习模拟器,支持: 1. 单进程模拟 2. MPI 模拟 3. NCCL 模拟(最快)
2025-08-19 12:20:42
561
原创 联邦学习论文分享:Recent Advances on Federated Learning: A Systematic Survey
多任务学习就是同时学习多个相关任务 (tasks),希望通过共享知识来提升整体效果。
2025-08-18 23:50:28
437
原创 尽量搞懂Transformer---第一篇---encoder-decoder和注意力机制
可以简单理解为encoder就是把现实中真实存在的文字、图片、音频等数据转变为数学内容(多指向量)。encoder本质上并不是一种具体的固定的算法,而是一类算法或者说是一种概念,能将现实问题转为数学问题的算法都可以称为Encoer。根据不同的任务可以选择不同的编码器和解码器(例如,CNN、RNN、LSTM、GRU等)举一个简单的例子,将词语转化为二维向量,苹果和香蕉都是水果,所以转化为向量后它们之间的向量距离应该小,苹果和苹果手机虽然名称类似,但不是同一类,所以向量距离应该大。
2025-08-18 13:07:20
563
原创 了解什么是Agent、function calling、prompt、MCP
我们写好解决某一需求的工具,如list_files列出所有文件名称,read_file读取文件,然后有一个程序AutoGPT,在AutoGPT中注册好这些工具,每一次你向大模型进行提问,user prompt“帮我找原神安装目录”,AutoGPT这个程序除了发送user prompt还会处理好system prompt一起发送,system prompt告诉大模型它现在拥有哪些工具,xxxx工具是干什么用的,如果你想这个工具就给我返回特定的调用工具的格式告诉我(AutoGPT),你(大模型)要调用这个工具。
2025-08-17 17:00:37
412
原创 搭建一个简易的MCP服务
在对话中,你可以找到刚刚写好的简易的mcp服务,点开它,可以看到mcp服务向大模型传递的所有工具(可以选择使用或不使用这些工具)。最后,在对话框中输入,想要知道本地电脑的系统信息,大模型会分析出想要完成该需求,需要使用到mcp中的工具(这个工具本质上是一个函数,写这个函数的时候需要写一些docstring,大模型也会读取这些注释,就知道这个工具是干什么用的了,在什么需求前提下,可能会用到这个工具),随后claude desktop会弹出提示框,询问是否允许使用mcp中提供的工具。
2025-08-17 14:13:25
483
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人