1、特征空间映射
若是不存在一个可以正确划分两类样本的超平面,怎么办?
将样本从原始空间映射到一个更高维的特征空间,使样本在这个特征空间内线性可分。
若是原始空间是有限维(属性数有限),那么一定存在一个高维特征空间使样本线性可分
设样本 x 映射后的向量为𝛷(𝑥),划分超平面为,原始问题就变成了
对偶问题为:
若是不存在一个可以正确划分两类样本的超平面,怎么办?
将样本从原始空间映射到一个更高维的特征空间,使样本在这个特征空间内线性可分。
若是原始空间是有限维(属性数有限),那么一定存在一个高维特征空间使样本线性可分
设样本 x 映射后的向量为𝛷(𝑥),划分超平面为,原始问题就变成了
对偶问题为: