软间隔与正则化

1、软间隔

支持向量机也会遇到过拟合的情况,也要避免把所有的样本全部分干净。根据上面所述,其实在现实中很难确定合适的核函数,使训练样本在特征空间中线性可分。就算是貌似线性可分,也很难断定是否是因为过拟合而造成的。

为了缓解这些问题,引入"软间隔"使其允许SVM在一些样本上出错,或者说允许在一些样本上不满足约束。如图:

PS4-1:也就是说在本节之前讲解的,将所有样本按照约束全部划分正确,成为"硬间隔"。、

那如何找到这个"软间隔",就是问题所在,回顾需求:

①可以找到这个划分超平面

②使得间隔尽可能的大

③有一些误差点掉落间隔中,可以被接受

也就是说基本思路为:最大化间隔的同时,让其不满足约束y_i(w^Tx_i+b)\geq 1的样本尽可能的少,数学表达为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sodas(填坑中....)

感谢老铁支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值