1、软间隔
支持向量机也会遇到过拟合的情况,也要避免把所有的样本全部分干净。根据上面所述,其实在现实中很难确定合适的核函数,使训练样本在特征空间中线性可分。就算是貌似线性可分,也很难断定是否是因为过拟合而造成的。
为了缓解这些问题,引入"软间隔"使其允许SVM在一些样本上出错,或者说允许在一些样本上不满足约束。如图:
PS4-1:也就是说在本节之前讲解的,将所有样本按照约束全部划分正确,成为"硬间隔"。、
那如何找到这个"软间隔",就是问题所在,回顾需求:
①可以找到这个划分超平面
②使得间隔尽可能的大
③有一些误差点掉落间隔中,可以被接受
也就是说基本思路为:最大化间隔的同时,让其不满足约束的样本尽可能的少,数学表达为: