一、个体与集成
1、集成
前几章讲述,所解决的问题都是在用一个模型,集成学习就是可以用多个模型解决问题。即通过构建并结合多个学习器来完成学习任务,有时称为 多分类器系统、基于委员会的学习。如图展示了集成学习的一般结构:
根据学习器类型分为:
同质:集成中只包含同种类型的个体学习器,其中的个体学习器称为基学习器,相对应的学习算法为基学习算法,如:所有个体学习器都为决策树,称为决策树集成等。
异质:集成中包含
前几章讲述,所解决的问题都是在用一个模型,集成学习就是可以用多个模型解决问题。即通过构建并结合多个学习器来完成学习任务,有时称为 多分类器系统、基于委员会的学习。如图展示了集成学习的一般结构:
根据学习器类型分为:
同质:集成中只包含同种类型的个体学习器,其中的个体学习器称为基学习器,相对应的学习算法为基学习算法,如:所有个体学习器都为决策树,称为决策树集成等。
异质:集成中包含