Sodas(填坑中....)
学习者,有错误敬请指正!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
支持向量回归
为L2正则项,此处引入正则项除了起正则化本身的作用外,也是为了和软间隔支持向量机的优化目标保持形式上的一致,这样就可以导出对偶问题引入核函数,C为用来调节损失权重的正则化常数。希望得到的惩罚可以达到最小化,找到最小化以后就能找到最好。仔细思考,所谓回归不就是找一个超平面从样本点中穿过,穿的越近越好。之前的章节里说过回归模型怎么去做分类,就是找到一个联系函数,将其化为0/1进行分类。也就是说让中间靠近超平面的点不计损失,在间隔带以外的样本点计算损失,即。支持向量回归的做法和软间隔是非常相似的。原创 2025-02-19 11:42:30 · 473 阅读 · 0 评论 -
软间隔与正则化
从这个角度来说,上式称为 “正则化” 问题,𝛺(𝑓)称为正则化项,C则称为正则化常数,𝐿𝑝范数是常用的正则化项,其可以使解有不同的性质。PS4-4:在其他地方会看到将这个一般形式整体称为"结构风险",西瓜书上将这个分成了两部分,西瓜书将两部分合起来的整体称为"待结构风险"。正则化项其实可以理解为"罚函数项",即通过对不希望的结构施以惩罚,使得优化过程趋向于希望目标,其实就是归纳偏好的概念。,违背的再多一些就无法接受了,实际上就是希望违背的样本点落在图中"紫色"点的位置,那么蓝色虚线段落的距离其实就是原创 2025-02-19 11:41:11 · 502 阅读 · 0 评论 -
核函数简述
PS3-1:这里涉及到对这个函数概念的一个理解,在这里函数其实现在起到一个空间的变换,在原来的空间上可以定义一个范数Norm(就是一种度量向量或矩阵“长度”或“大小”的函数,||∙||),假如说为。出现,从来没有单独的出现过,那我们你能不能找到一个不用直接算这个高维向量的内积,而是用一个可以代替内积计算的"东西",甚至说都不需要知道𝛷(𝑥)到底是什么?这个其实说的就是上面的PS3-1中提出的能对应出来的"甚高维空间"。,这个核矩阵就要求了,这个对角线是为0的,且是对称的,半正定的(所有特征值大于等于0)原创 2025-02-18 23:40:23 · 606 阅读 · 0 评论 -
SVM对偶问题
𝛤(𝜇,𝜆)为拉格朗日函数𝐿(𝑤,𝑏,𝛼)关于 𝑥 的下确界。⑤𝑠𝑢𝑝{𝑥∈ℝ| 0<𝑥<10}=10:集合 {𝑥∈ℝ| 0<𝑥<10} 的上确界是 10,因为 10 是大于集合中所有元素的最小值,但 10 不在集合中。②𝑖𝑛𝑓{𝑥∈ℝ| 0< 𝑥<10}=0:集合 {𝑥∈ℝ|0<𝑥<10} 的下确界是 0,因为 0 是小于集合中所有元素的最大值,但 0 不在集合中。PS2-4:这里的"∇𝑥"就是对变量x的梯度,其实就是对x求导,其中不等式的约束的乘子必须是大于原创 2025-02-18 23:39:20 · 1229 阅读 · 0 评论 -
误差逆传播算法
知识点分栏原创 2025-02-09 20:50:15 · 659 阅读 · 0 评论 -
评估-过拟合、查全率、查准率与F1、ROC与AUC
评估部分知识点原创 2025-02-03 20:33:29 · 1056 阅读 · 0 评论 -
感知器模型
神经元收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值θ进行比较(做减法),然后通过"激活函数"(模拟"抑制"和"激活")处理以产生神经元的输出(通常是给下一个神经元)。神经网络中最基本的成分是神经元模型,神经元模型是一个包含输入,输出与计算功能的模型。但是阶跃函数不连续且不光滑,故在M-P神经元模型中,也是采用Sigmoid函数来近似,Sigmoid函数将较大范围内变化的输入值挤压到(0,1)输出值范围内,所以也成为挤压函数。原创 2025-02-03 12:33:12 · 892 阅读 · 0 评论 -
决策树——多变量决策树
也就是说想找出的这个红色的折线就是多个属性的多个线性方程。但是学习任务的真实分类边界比较复杂时,必须使用很多段的划分才能得到更好的近似。得到的树就简化了,在决策树里面就是要学一个线性分类器,目标就是让两端每一端里面包含的样本尽可能的同类的多。若我们把每个属性视为坐标空间中的一个坐标轴,则a个属性描述的样本就对应了a维空间中的一个数据点,寻找不同样本的分类边界。决策树是可以转成规则的,并不是僵硬的转化,而是可以通过规则的前件合并进一步得到泛化性能更好的"规则"决策树形成的分类边界的特点:轴平行。原创 2025-02-02 10:50:40 · 505 阅读 · 0 评论 -
决策树——连续与缺失值
接下来对分支{敲声 = 沉闷}即结点{9,14,17}进行划分,结点{9,14,17}因为包含的样本全部属于同一类别无需划分,直接把结点{9,14,17}标记为叶结点,接下来对分支“敲声 = 浊响”即结点{7,8,13}进行划分,计算过程和上面一样,需要注意的是样本的权重是。比较发现,“纹理”在所有属性中的信息增益值最大,因此,“纹理”被选为划分属性,用于对根节点进行划分。将这12(n)个样本取11(n-1)个区间的中点:{95.5,95,92.5,90,88.5,85.5,82,79,75,71,68}原创 2025-02-02 10:49:16 · 718 阅读 · 0 评论 -
决策树的剪枝处理——预剪枝和后剪枝
将结点⑤替换成叶结点,在训练集中为{6,7,15}的训练样本,经过对结点⑥的剪枝。所以将该叶结点标记为"好瓜"。将结点⑥替换成叶结点,在训练集中为{7,15}的训练样本,有一个好瓜,一个坏瓜。此时,验证集中编号为:{4,5,8,11,12}的样例被划分正确,验证集精度为。1)若不划分①结点,则将①结点其标记为叶结点,类别标记为训练样例中最多的类别,即“通过”。①"预剪枝":在决策树生长过程中,对每个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能的提升,则停止划分并将当前结点标记为叶结点。原创 2025-02-01 15:20:22 · 981 阅读 · 0 评论 -
决策树 的增益率、信息增益、基尼指数
一件事发生的概率在0-1之间,取对数后小于零,不满足需求,而概率的倒数的对数是大于零的;同时根据之前说的为了使概率越大,信息量越小,取了倒数才能体现这种关联,也就是对数前加负号。④为什么log底数为2?理论上熵中的对数函数可以采用任何底数,通常遵循信息论的普遍传统,使用2作为对数的底,此时单位为bit。表示了一个二进制选择(0或1)所包含的信息量。常见的还有:以e为底,即自然对数,此时的单位为nat。使用较少的是以3为底,此时单位为Tet;以10为底,单位为哈特利(Hartley)。原创 2025-02-01 15:17:48 · 1558 阅读 · 0 评论 -
多分类学习与类别不平衡问题
多分类问题:机器学习领域中的一个重要问题,它指的是将输入数据分为多个类别的问题。类别不平衡问题:也叫数据倾斜或数据不平衡,是指分类任务中不同类别的训练样例数目差别很大的情况。原创 2025-01-23 19:47:16 · 782 阅读 · 0 评论 -
对数几率回归、逻辑回归
对数几率回归(Logistic Regression),又称逻辑回归,是一种用于解决分类问题的经典统计模型,尤其适合用于二分类问题。原创 2025-01-23 19:43:42 · 1104 阅读 · 0 评论