深度学习环境配置指令大全

环境配置

官网/博客合集

清华镜像站

anaconda官网

pytorch官网

pytorch历史库

官网pytorch与cuda对应版本下载

博客torch与torchvision与python对应关系

python与pytorch对应关系

环境相关

创建环境

conda create --n unet python=3.9

激活环境

conda activate  unet

退出环境

conda deactivate

删除环境

conda remove -n unet --all

检查环境冲突

pip check

安装相关

安装requirements

pip install -r requirements.txt

安装时显示进度条

pip install -r requirements.txt --progress-bar on

conda安装

指定版本加=

conda install torch=2.1.0

conda卸载

conda remove torch

pip安装

指定版本加==

pip install torch==2.1.1

如何下载老版本?pip 后面加上这一段

-f https://download.pytorch.org/whl/torch_stable.html

想换清华源

-i https://pypi.tuna.tsinghua.edu.cn/simple

pip卸载

pip uninstall torch

镜像源相关

pip源

pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple

conda源

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

清除源

->恢复默认

conda config --remove-key channels

系统或conda相关

更新conda环境

conda update -all

清除缓存

conda clean --all

pip导出

导出环境为txt

pip freeze > requirements.txt

pip导入

用txt导入环境依赖

pip install -r requirements.txt

conda导出

导出为yml

conda envname export >  requirements.yml

conda导入

用yml文件导入环境依赖

conda env create -n condm2  -f requirements.yml

检查与查看相关

查看指定包

conda search name

查看现有包

conda list

查看显卡环境

nvidia-smi

查看cuda版本

nvcc -V

torch是否可用

python
import torch
#查看cuda是否可用
print(torch.__version__)
#当前torch版本
print(torch.cuda.is_available())
#查看cuda设备的数量
print(torch.cuda.device_count())
#查看当前使用的cuda编号
print(torch.cuda.current_device())
#查看GPU设备名字
print(torch.cuda.get_device_name())
#查看设备容量
print(torch.cuda.get_device_capability(0))
#查看算力

cuda是否可用

nvcc -V
python
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)

TensorFlow是否可用

先python进入编辑页面

python
import tensorflow as tf
print("TensorFlow Version:", tf.__version__)
print("Available devices: ", tf.config.experimental.list_physical_devices())
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))

快速安装指令

创建环境 python3.9 cu118

conda create -n new python=3.9

conda activate new

conda update --all

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

conda install tensorflow-gpu=2.6

conda install cudatoolkit=11.3

conda install cudnn=8.2

pip install numpy==1.23.4

每个模块参数量

from collections import defaultdict
def summarize_model_parameters(model):
    module_param_count = defaultdict(int)

    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue

        # 获取顶层模块名,比如:backbone.encoder.layer0.conv
        parts = name.split('.')
        if len(parts) > 1:
            top_module = parts[0]
        else:
            top_module = 'root'

        # 统计当前参数的数量
        module_param_count[top_module] += param.numel()

    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print(f"\n🔍 模型总参数量:{total_params / 1e6:.2f} M\n")

    print("📊 各模块参数量统计如下:")
    sorted_modules = sorted(module_param_count.items(), key=lambda x: -x[1])
    for mod, count in sorted_modules:
        print(f"  {mod.ljust(20)}: {count / 1e6:.3f} M ({count:,} params)")

然后在运行那里,

summarize_model_parameters(model)

每个模块运行时间

在train的epoch里面

with torch.autograd.profiler.profile(use_cuda=True) as prof:
            mask_pred, fg_pred, bg_pred, uc_pred = model(x)
        
        # ✅ 打印最耗时的函数
        print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=30))

        break  # ❗️为了加快测试,只运行一批(你可以先只跑 1 个 batch)

余弦退火

顶端


from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts

后面

scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2, eta_min=1e-6)

linux下的一些指令

alien -i xx.rpm


CUDA_VISIBLE_DEVICES=7 python train.py
指定gpu运行

sudo su
换root

共享路径
cd /mnt/hgfs
ls
刷新环境
source ~/.bashrc  # 对于 bash 用户

查看回收站
du -sh .Trash-0


rm -rf .Trash-0/*


conda --version

下载miniconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sha256sum Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

康康爱吃肉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值