NumPy_Pandas_apply关于axis参数的知识点

目录

前言

一、NumPy 中的 axis

知识点

示例

二、Pandas DataFrame 中的 axis

知识点

示例

三、apply 函数中的 axis

知识点

示例

四、总结对比

五、实际应用示例

1. 计算每列的最大值

2. 计算每行的平均值

3. 使用 NumPy 的函数


前言

        在 NumPy、Pandas 和 apply 函数中,axis 参数用于指定操作的方向。

一、NumPy 中的 axis

知识点

    在 NumPy 中,axis 用于定义数组的操作方向:

  • axis=0:沿着行(垂直方向)操作,即对每一列执行操作
  • axis=1:沿着列(水平方向)操作,即对每一行执行操作

示例

import numpy as np

arr = np.array([[1, 2], [3, 4]])

# 沿着 axis=0 求和
np.sum(arr, axis=0)  # 输出: array([4, 6]) → 对每列求和

# 沿着 axis=1 求和
np.sum(arr, axis=1)  # 输出: array([3, 7]) → 对每行求和

二、Pandas DataFrame 中的 axis

知识点

    在 Pandas 中,axis 的含义与 NumPy 类似,但更直观:

  • axis=0 或 'index':表示按行操作(即针对每一列执行操作)
  • axis=1 或 'columns':表示按列操作(即针对每一行执行操作)

示例

import pandas as pd

df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

# 沿着 axis=0 求和
df.sum(axis=0)  # 输出: A    3, B    7 → 对每列求和

# 沿着 axis=1 求和
df.sum(axis=1)  # 输出: 0    4, 1    6 → 对每行求和

三、apply 函数中的 axis

知识点

    apply 是 Pandas 提供的一个非常强大的函数,允许用户对 DataFrame 或 Series 应用自定义函数。axis 参数决定了函数是应用于行还是列:

  • axis=0 或 'index':默认值,函数会被应用到每一列上
  • axis=1 或 'columns':函数会被应用到每一行上

示例

def my_func(x):
    return x.max() - x.min()

# 默认 axis=0 → 对每列应用函数
df.apply(my_func)

# 设置 axis=1 → 对每行应用函数
df.apply(my_func, axis=1)

四、总结对比

五、实际应用示例

1. 计算每列的最大值

df.apply(lambda x: x.max())  # axis=0,默认行为

2. 计算每行的平均值

df.apply(lambda x: x.mean(), axis=1)

3. 使用 NumPy 的函数

np.mean(df, axis=0)  # 计算每列的均值
np.mean(df, axis=1)  # 计算每行的均值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值