动态规划之打家劫舍 II

这篇博客探讨了如何根据《代码随想录》中的指导,解决LeetCode上的212题。作者首先介绍了初始思路,将数组分为两部分并分别计算最大值,然后采用动态规划的方法实现。在理解卡哥思路的过程中遇到困惑,通过官方题解得到启发,最终编写了自己的代码。代码中,`dp`作为内部函数用于计算不同情况下的最大值,并特别强调了`m`参数的传递。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习安排根据《代码随想录》leetcode212

思路:

看到这题的思路就是,把数组分成两部分:第一部分是 【0,nums.size()-2】,另一部分是【1,nums.size()-1】;

然后分别计算最大值,再对两个最大值再求最大值。

但是起初不知道怎么去两次dp 比较,看了会卡哥的思路,半懂,特别是说道下面这句话:

我就蒙了。

于是,看了一下官方题解,最后结合dp,写了自己的代码:

class Solution {
public:
    int maxnum(vector<int>& nums,vector<int>&dp,int start,int end,int m)
    {
        dp[start]=nums[start];
        dp[start+1]=max(nums[start],nums[start+1]);
        for(int i=start+2;i<=end;i++)
        {
            dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
        }
        return dp[m];
    }
    int rob(vector<int>& nums) 
    {
        if(nums.size()==0)return 0;
        else if(nums.size()==1)return nums[0];
        else if(nums.size()==2)return max(nums[0],nums[1]);
        vector<int>dp(nums.size(),0);
      int s1= maxnum(nums,dp,0,nums.size()-2,nums.size()-2);
      int s2=maxnum(nums,dp,1,nums.size()-1,nums.size()-1);
      return max(s2,s1);
    }
};

dp作为一个函数内部的成员函数,可以通过赋值计算两种不同情况下的最大值;

注意m的参数传递!!!!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值