Educode--使用PyTorch训练MNIST数据集上的卷积神经网络

本文详细介绍了如何使用PyTorch构建一个简单的卷积神经网络(CNN),用于MNIST数据集的手写数字识别,包括网络结构定义、训练过程和评估。通过一步步代码展示,读者将理解如何设置优化器、损失函数和学习率调整策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任务一:

第一关:使用PyTorch建立网络模型

import argparse

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torchvision import datasets, transforms

from torch.optim.lr_scheduler import StepLR


 

class Net(nn.Module):

    def __init__(self):

        ########## Begin ##########

        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(1, 32, 3, 1)

        self.conv2 = nn.Conv2d(32, 64, 3, 1)

        self.dropout1 = nn.Dropout(0.25)

        self.dropout2 = nn.Dropout(0.5)

        self.fc1 = nn.Linear(9216, 128)

        self.fc2 = nn.Linear(128, 10)

        ########## End ##########

    def forward(self, x):

        ########## Begin ##########

        x = self.conv1(x)

        x = F.relu(x)

        x = self.conv2(x)

        x = F.relu(x)

        x = F.max_pool2d(x, 2)

        x = self.dropout1(x)

        x = torch.flatten(x, 1)

        x = self.fc1(x)

        x = F.relu(x)

        x = self.dropout2(x)

        x = self.fc2(x)

        output = F.log_softmax(x, dim=1)

        return output

        ########## End ##########

第二关:使用PyTorch训练网络模型

from __future

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值