java-代码随想录第十六天| 112.路径总和、513.找树左下角的值、106.从中序与后序遍历序列构造二叉树、105.从前序与中序遍历序列构造二叉树

目录

112.路径总和

513.找树左下角的值

106.从中序与后序遍历序列构造二叉树

105.从前序与中序遍历序列构造二叉树


参考链接:代码随想录

112.路径总和

链接:112. 路径总和 - 力扣(LeetCode)

题目:

        给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

        叶子节点 是指没有子节点的节点。

题解:

        需要二叉树的根节点和计数器,计数器用来计算二叉树的一条边之和是否正好是目标和。

计数器如何统计这一条路径的和?

        让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。如果最后count==0,同时到了叶子节点的话,说明找到了目标和。如果遍历到了叶子节点,count不为0,就是没找到。

        注意:在进入当前节点时,已经执行了 targetSum -= root.val,所以这里的 targetSum 实际上是原始目标值减去路径上所有节点值(包括当前叶子节点)后的剩余值,如果剩余值 targetSum 为0,说明从根节点到当前叶子节点的路径和恰好等于原始目标值,返回 true。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean hasPathSum(TreeNode root, int targetSum) {
        if(root == null){
            return false;
        }
        targetSum-=root.val;

        //在叶子节点处,我们检查此时的 targetSum 是否为0

        if(root.left == null && root.right == null){
            return targetSum=0;
        }   

        if(root.left != null){
            boolean left=hasPathSum(root.left,targetSum);
            if(left){ //已经找到,提前返回
                return true;
            }
        }  
        if(root.right != null){
            boolean right=hasPathSum(root.right,targetSum);
            if(right){ //已经找到,提前返回
                return true;
            }
        }  
    }
}

513.找树左下角的值

链接:513. 找树左下角的值 - 力扣(LeetCode)

题目:

        给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。

假设二叉树中至少有一个节点。

题解:

1.参数必须有要遍历的树的根节点,还有一个int型的变量来记录最长深度。

2.需要两个全局变量,Deep用来记录最大深度,value记录最大深度最左节点的数值。

3.当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private int Deep=-1;
    private int value=0;
    public int findBottomLeftValue(TreeNode root) {
        value=root.val;
        findLeftValue(root,0);
        return value;
    }

    private void findLeftValue(TreeNode root,int deep){
        if(root == null) return;
        if(root.left == null && root.right == null){
            if(deep > Deep){
                value=root.val;
                Deep=deep;

            }

        }
        if(root.left != null) findLeftValue(root.left,deep+1);
        if(root.right != null) findLeftValue(root.right,deep+1);

    }
}

106.从中序与后序遍历序列构造二叉树

链接:106. 从中序与后序遍历序列构造二叉树 - 力扣(LeetCode)

题目:给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。

题解:

中序:左中右

后序:左右中

后序的最后一个元素一定是根节点,然后根据中序,确定左区间和右区间里面的元素,再根据左,右区间里面的元素反过来又去切割后序数组。

class Solution {
    Map<Integer, Integer> map;  // 方便根据数值查找位置
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(inorder,  0, inorder.length, postorder,0, postorder.length);  // 前闭后开
    }

    public TreeNode findNode(int[] inorder, int inBegin, int inEnd, int[] postorder, int postBegin, int postEnd) {
        // 参数里的范围都是前闭后开
        if (inBegin >= inEnd || postBegin >= postEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(postorder[postEnd - 1]);  // 找到后序遍历的最后一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定后序数列的个数
        root.left = findNode(inorder, inBegin, rootIndex,
                            postorder, postBegin, postBegin + lenOfLeft);
        root.right = findNode(inorder, rootIndex + 1, inEnd,
                            postorder, postBegin + lenOfLeft, postEnd - 1);

        return root;
    }
}

105.从前序与中序遍历序列构造二叉树

链接:105. 从前序与中序遍历序列构造二叉树 - 力扣(LeetCode)

题目:给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

题解:

前序:中左右

中序:左中右

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    Map<Integer, Integer> map;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) { // 用map保存中序序列的数值对应位置
            map.put(inorder[i], i);
        }

        return findNode(preorder, 0, preorder.length, inorder,  0, inorder.length);  // 前闭后开
    }

    public TreeNode findNode(int[] preorder, int preBegin, int preEnd, int[] inorder, int inBegin, int inEnd) {
        // 参数里的范围都是前闭后开
        if (preBegin >= preEnd || inBegin >= inEnd) {  // 不满足左闭右开,说明没有元素,返回空树
            return null;
        }
        int rootIndex = map.get(preorder[preBegin]);  // 找到前序遍历的第一个元素在中序遍历中的位置
        TreeNode root = new TreeNode(inorder[rootIndex]);  // 构造结点
        int lenOfLeft = rootIndex - inBegin;  // 保存中序左子树个数,用来确定前序数列的个数
        root.left = findNode(preorder, preBegin + 1, preBegin + lenOfLeft + 1,
                            inorder, inBegin, rootIndex);
        root.right = findNode(preorder, preBegin + lenOfLeft + 1, preEnd,
                            inorder, rootIndex + 1, inEnd);

        return root;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值