一、线性回归算法的基本介绍
线性回归(Linear regression)是利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。
线性回归算法分类:一元线性回归(y = kx +b )、多元线性回归(y=k1x1+k2x2+k3x3+b)
基础的API:LinearRegression
# 1. 导入数据包
from sklearn.linear_model import LinearRegression
# 2. 准备数据
x = [[160], [166], [172], [174], [180]]
y = [[56.3], [60.6], [65.1], [68.5], [75]]
# 3. 实例化模型
lr = LinearRegression()
lr.fit(x, y)
# 4. 预测
print(lr.predict([[163]]))
这是最简单的API,接下来通过一个案例来深入了解线性回归
二、波士顿房价案例
1. 导入数据
该数据已经内置 不用下载 直接导包进行 但如果版本过高可能需要自己下载,接下来导入的数据在下面的步骤都需要用到。实例化数据对象就可以使用了 这里我用变量bs接收,需要注意的是这个数据官方已经把他分好了数据部分(data),和目标部分(target)并且由字典封装,我们调用就可以,不用自己进行特征提取。
# 1. 准备数据
from sklea