前言
随着云计算技术的发展,云电脑正悄然成为游戏玩家与 AI 开发者手中的 “新宠”。相较于传统PC,在性能、成本与灵活性三个维度上展现出独特优势。无需昂贵的硬件成本,用户便能轻松拥抱顶配电脑的畅快体验。无论是外出办公时的临时需求,还是手边设备配置不足的窘迫时刻,云电脑都能如影随形,随开随用。

那么我们该如何选择一款合适的云电脑呢?今天我们就来测评 ToDesk云电脑、青椒云、海马云这三大云产品,帮你找出最适合的那一款。
文章目录
一、评测选手介绍
1.1 ToDesk云电脑
ToDesk 远程控制桌面想必大家并不陌生,这也是我日常一直在用的远程控制软件。而 ToDesk云电脑是其主打的云端服务平台,它自带 OTT SD-WAN 网络优化和首发的 RTC 引擎,能让云端操作实现无感低延时,体验精准媲美本地电脑。同时,它还延续了自家三大核心远程技术 ——ZeroSync 引擎、OTT SD-WAN 网络、音视频编解码,高效稳定、清晰流畅、性价比高是其主要特点。
在使用场景方面,ToDesk 提供了多种配置的电脑供选择。无论你是游戏电竞爱好者、AI 创作者、从事图像渲染工作,还是有企业版应用需求,ToDesk云电脑都能满足,真正实现不限场景、一键云玩。
在配置选择上,ToDesk云电脑的灵活性十分突出,提供了 30 系、40 系、50 系等全系列显卡配置方案。借助 ZeroSync 引擎,即便是性能老旧的 “老爷机”,也能体验到搭载 50 系显卡的顶级配置,一键畅享 3A 游戏大作带来的清晰流畅体验。
1.2 海马云
海马云创立于 2016 年,是一家新兴的移动内容云计算平台,通过互联网提供动态可扩展的移动内容云计算服务。在显卡配置上,海马云电脑搭载了 NVIDIA RTX4090、RTX4070;相较于 ToDesk云电脑,其配置略显不足 —— 并未搭载 5090 系这类顶尖显卡。
1.3 青椒云
青椒云也是云电脑服务厂商,涵盖公有云桌面服务和私有云桌面服务。支持多种设计软件和专业应用,满足视觉设计、影视制作等行业的需求,同时提供灵活的资源配置和扩展选项。
1.4 传统笔记本电脑
本次测试中,我们特意选用了一台具有广泛代表性的普通配置电脑作为参照设备。这台电脑是日常办公与家庭娱乐中较为常见的机型,除了搭载 NVIDIA GeForce GTX 1650 入门级显卡外,还配备了 Intel Core i5-10400F 处理器、16GB DDR4 内存以及 512GB SSD 固态硬盘,整体硬件水平处于大众用户的主流区间。
二、测试准备与说明
2.1 测试场景与核心指标
本次测试聚焦云电脑与传统 PC 在两大核心场景的实战表现,通过多维度指标拆解,来体现云电脑 vs 传统PC的全方位对比。
- 在 3A 游戏场景的评测中,我们构建了立体化的测试体系:
- 其一,设备兼容性对比,着重考察各平台对不同终端(如笔记本、平板、手机)的适配深度,包括操作映射的精准度与多设备协同的流畅度
- 其二,聚焦各云电脑平台的资源储备是否充足,能否实现 “随开随玩”—— 具体包括游戏库覆盖广度(主流 3A 大作的收录情况)、高峰时段的资源调度效率(如同时在线用户激增时是否出现排队等待)
- 其三,核心体验维度。通过帧率表现、延迟控制与画面体验的多维度对比,直观呈现不同设备在游戏性能上的差异。
- 对于AI 训练场景实测的方面
- 其一,是创作部署的时间成本,从环境初始化、依赖库配置到模型加载完成等的时间消耗,关注非技术用户的操作门槛(如是否支持一键部署、自动版本适配)。
- 其二,以 Stable Diffusion 为测试样本,在固定参数(512×512 分辨率、50 步迭代、相同提示词库)下,对比单张图像生成耗时,图片生成质量。
- 其三,针对大模型推理效率,选取 DeepSeek 等主流模型,通过复杂指令集(如多轮逻辑推理、长文本摘要)的响应速度与准确率双重维度,考验各平台对大算力需求的支持能力。
2.2 测试环境与设备信息
以下是本次我们评测的配置图如下
名称 | 场景方向 | cpu | 显卡 | 运行内存 |
---|---|---|---|---|
ToDesk云电脑 | 3A 游戏场景 | Intel i7-12核20线程 | NVIDIA GeForce RTX 4070 | 32GB |
ToDesk云电脑 | AI 训练场景 | 8核16线程 | NVIDIA GeForce RTX 4090 | 64GB |
海马云 | 3A 游戏场景 | Intel i7-12核20线程 | NVIDIA GeForce RTX 4070 | 32GB |
海马云 | AI 训练场景 | Intel i7-12核20线程 | NVIDIA GeForce RTX 4070 | 32GB |
青椒云 | 3A 游戏场景 | Intel Xeon 16核16线程 | NVIDIA GeForce RTX 4060 Ti | 32GB |
青椒云 | AI 训练场景 | AMD EPYC-Milan16核16线程 | NVIDIA RTX A4000 | 32GB |
传统笔记本电脑 | 全场景评测 | AMD Ryzen 5 4600H 6核12线程 | NVIDIA GeForce GTX 1650 | 8GB |
从配置信息上看
- ToDesk云电脑: 提供的13 代 Intel Core 12核20线程 使其在多任务处理、大型软件与游戏运行中表现出色,性能稳居天梯图前列,并且在AI训练场景还提供了4090这一顶尖配置供我们选择。
- 海马云:同样采用 13 代 Intel Core 12 核 20 线程处理器,但高性能的 4090 显卡全系列存在资源不足的问题,用户点击购买时会直接显示服务器繁忙。
- 青椒云: 则是直接将服务器资源划拨过来,基于 Skylake - SP 架构,处理器采用的是14 纳米制程。相较于其他几款云电脑,该处理器制程较老旧,性能欠佳,在运行大型游戏和专业软件时,表现不够强劲。
三、3A 游戏场景实测:帧率、延迟与画面体验对比
3.1 跨平台兼容性对比
云电脑的跨平台兼容性也是作为选择的一个重要方向,其直接决定的我们能否在拥有不同设备的情况下能否使用云电脑,是用户体验的很大一部分。
从跨平台设备兼容性来看,ToDesk 的表现最为出色,其支持的系统与设备覆盖范围广泛,不仅包含 Windows、macOS、iOS、安卓,还兼容平板设备及 Web 网页端。用户只需通过浏览器,即可体验云电脑的强悍性能。
- 海马云的跨平台兼容性相对一般,仅支持电脑端(含 Windows 设备)与苹果设备。
- 青椒云的跨平台兼容性尚可,提供了对电脑端、手机端及平板设备的支持,但与 ToDesk 相比,因其不支持网页端,在使用便携性上大打折扣。
3.2 网络带宽对比
云电脑而言,稳定充足的宽带是流畅运行的基础,尤其 3A 大作对数据传输速度和稳定性要求极高。下面我们看看各家云电脑表现如何?网络带宽究竟哪家最强?
在网络带宽测试方面结果出乎我们意料,本来以为3大云电脑厂家的网络带宽就算有差距也不会相差太大。结果ToDesk云电脑测试速度居然达到了788Mbps,上传速度也达到了527Mbps,而青椒云和海马云以及本地电脑测试下来最高才20M左右的速度, ToDesk云电脑属于是遥遥领先一大步。
- 这里我和大家一样觉得很不可思议,真正下载速度有这么快嘛?废话不多说我们实际下载一款游戏来看看
实测数据显示,ToDesk云电脑的下载表现与我们前面测试的一致:网络平均下载速度稳定在 700Mbps 以上,峰值更是达到 752Mbps。这样的速度堪称强悍 —— 即便是动辄数十 GB 的大型 3A 游戏,也能在 5 分钟内完成下载,为玩家节省了大量等待时间。
3.3 帧率、性能实测对比
在帧率与性能测试环节,我们选用 AnTuTu Benchmark(安兔兔)作为评估工具。正如玩家圈常说的 “不服跑个分”,通过量化的跑分数据,能更直观地展现各设备在运算能力、图形渲染等维度的真实表现,为性能对比提供扎实依据。
从本次实际测试结果来看,ToDesk 的跑分表现最为突出,最高达到 4161570 分。同为搭载 NVIDIA GeForce RTX 4070 显卡的海马云,其跑分略低于 ToDesk云电脑。而青椒云受限于资源配置,其电竞云电脑的最高配置为 4060 系显卡,因此跑分较 ToDesk 低了近一半,在电脑性能方面稍显不足。
青椒云还有一个很尴尬的情况是,电竞方面的电脑资源不太够用咱们这台测试的电脑还是避开了高峰时间段才体验到的。
- 说完了跑分我们接下看看各家电脑在高性能场景下帧率如何吧!
本次测试中,ToDesk 的帧率表现领先,整体达到 500 多帧。青椒云因显卡硬件配置稍逊于另外两家,测试中帧率约为 254 帧。海马云性能表现尚可,平均帧率达 300 多帧,略低于 ToDesk。
其中在高渲染场景下,ToDesk 的平均帧率稳定在 400-500 帧区间,表现均衡;而其他几家的帧率波动幅度则相对较大。
3.4 3A游戏场景实测对比
既然是游戏场景的实测,那必然得请出 3A 大作来 “真刀真枪” 地验验成色。咱们先从基础体验说起 —— 各大云服务厂商对这些重磅游戏的支持给不给力?云电脑里是不是早就贴心预装好了?这可是我们玩家上手前最关心的事儿。
从游戏支持来看,ToDesk云电脑和海马云的预装游戏数量最多。相比之下,青椒云仅提供基础的电脑与网络支持,并未预装任何游戏,这无疑给玩家的体验带来了阻碍 —— 若想用它玩 3A 大作,还得花大量时间下载,体验欠佳。海马云虽然支持的游戏数量不少,但和 ToDesk云电脑相比,其预装的大多是小游戏,在 3A 游戏的覆盖上明显不及 ToDesk。
- 下面我们采用3A游戏 地平线4极速竞技 来测试一下电脑在实际使用中的电脑的性能和帧率变化如何,在测试中选择开启最高画质来测一测。
在实际测试中ToDesk云电脑在 地平线4极速竞技最高画质下的平均帧率在200 和 260之间,上下波动很小FPS始终保持在200以上。
海马云在本次测试中表现也还不错,实际帧率在 150 左右上下浮动但是由于画面传输技术的原因实际体验不是很好,虽然我们开的是最高画质,但传输过来的画面感觉却有点糊。
青椒云在实际测试表现更为不佳,帧率在 90~120 之间来回跳动,体验不及海马云,难满足流畅需求。
3.5 产品性价比对比
性价比是用户选择云电脑的核心考量因素之一,尤其在注重实用消费的当下,高性价比产品更易获得青睐。在这一维度上,ToDesk云电脑的做法颇具诚意:新用户注册即可领取 1 小时免费体验时长,让用户先亲身体验产品性能,满意后再决定是否进一步使用。这种 “先体验后选择” 的模式,也从侧面体现出 ToDesk 对自身产品实力的十足信心。
从对比数据可见,ToDesk云电脑在三款云电脑中的定价相对最低。以满足游戏娱乐需求的配置为例,其 3060 机型的单位时长价格更具优势;而配置相当的青椒云,单位时长价格略高于 ToDesk。海马云则受限于设备资源可选范围,仅提供 70 系列机型,其单位时长价格在三者中相对较高。
四、AI 训练场景实测:算力、效率与成本博弈
云电脑除了在游戏电竞领域应用广泛外,在 AI 训练场景的需求也十分旺盛。相较于 90 系列显卡动辄一万多元的起步价,这让许多想要尝试 AI 创作的人望而却步。而云电脑能完美解决这一问题,用户只需花费几十元,就能体验到 90 系列顶尖配置的显卡,足以满足处理对话生成、高复杂度图像生成等 AIGC 任务所需的高性能要求。
4.1 AI 创作部署时间成本对比
有了云电脑,我们在进行对话生成、高复杂度图像生成等 AIGC 任务时,高性能方面已无需担忧。但在使用云电脑开展 AI 训练与创作时,运行环境同样至关重要。如果云电脑未预先安装对应的环境部署,用户就需手动安装大量依赖环境,这无疑会十分繁琐。下面,我们就来看看各大云电脑厂商提供的 AI 云电脑环境究竟如何。
- 综合来看,三款云电脑在 AIGC 环境支持方面的呈现出明显梯度:ToDesk云电脑 > 海马云 > 青椒云。
其中青椒云的支持最为有限,仅提供了 Stable Diffusion 这一款适合初学者快速入门的 AI 绘画软件;海马云则包含 ComfyUI 以及 DeepSeek R1 14B 大模型,但相较于 ToDesk云电脑提供的 DeepSeek R1 32B 大模型,在量级上存在明显差距。而 ToDesk云电脑在 AI 绘画领域的支持更为全面,不仅预设了 ComfyUI,还预装了 sd-webui。
- 因此,在本次 AI 训练环境对比中,ToDesk云电脑更适合用于 AI 训练 —— 无论是进行大模型训练还是 AI 绘画创作,都能实现开箱即用,无需担心环境下载等问题。
4.2 AI绘画场景 Stable Diffusion 性能对比
Stable Diffusion 是由 Stability AI 公司于 2022 年推出的开源生成式人工智能模型。它是首个完全开源的多模态生成模型,它结合了分数阶扩散方程和卷积神经网络(CNN)的思想。这个方法的核心思想是将文本作为扩散源,通过扩散过程将文本信息传递到整个图像中,从而生成一张图像。
在Ai 绘图训练方面我们主要使用两款软件分别是 Stable Diffusion 与 ComfyUi 。
- Stable Diffusion 原生界面简单,其 WebUI 采用填表式操作,适合初学者快速入门,各项功能布局直观,但工作流不够直观,复杂任务时用户难以清晰把握整个生成过程。
- ComfyUi 则是以图形化界面和节点式操作为亮点,用户通过拖拽节点构建生成流程,能清晰看到图像生成的每一步骤和数据流向,适合需要自定义生成流程的高级用户,但上手难度较高,需要对 Stable Diffusion 及各种扩展能力的原理有一定理解。
- 在 ToDesk云电脑上为俩款软件都给我们提供了,不仅有ComfyUi 启动器,还有Stable Diffusion的WebUI 启动器非常全面
借助 ToDesk云电脑的 ComfyUI 工作流,生成一张高清图片仅需 3 秒,高效性能尽显。更贴心的是,启动器中预设了 3 个涵盖常见场景的默认模板,清晰呈现节点逻辑与参数设置,能帮助初学者快速上手,轻松开启 AI 绘图创作。
- 如果你对 ComfyUi有一定基础不想使用默认的工作流,没关系官方在整合包里已经准备好各种工作流和大模型供我们选择,并且提前内置了夸克网盘让我们的体验畅通无阻。
在推荐的工作流链接中我们可以找到百花齐放的 comfyUi 工作流,不管是AI生成视频还Ai绘制各种风格的功能都应有尽有。
这里可能有很多人说 ComfyUi 是太难上手了,ToDesk中可以快捷使用Stable Diffusion 嘛? 那自然是没问题,官方为我们预设了Stable Diffusion的WebUI 启动器,这里我们也是只需要一键启动就可以使用 Stable Diffusion了,我们这里测试生成一张图片大概3秒钟就好了。
这里我们也是使用各个云电脑都进行了Stable Diffusion绘画。测试过程中,所有云电脑均采用完全一致的提示词,重点聚焦于复杂场景(如包含多人物、多元素交互的画面)与高分辨率图像生成场景 —— 通过对比最终输出的图像质量,来评判哪家在细节呈现(如纹理清晰度、元素边缘处理)和色彩准确性(如色调还原度、色彩过渡自然度)上表现更优,整体效果更完善。
从图像对比结果中,我们能清晰看出:ToDesk云电脑生成的图像质量处于本次测试的第一梯队,整体表现令人满意,尤其在细节呈现与色彩准确性上优势突出。
相比之下,青椒云和海马云的表现则略逊一筹,在绘制细节方面存在明显不足。特别是在复杂场景或高分辨率图像生成任务中,二者均未能达到与 ToDesk云电脑同等的水准,不仅整体画面精细度欠佳,还出现了人物细节不完善(如手指形态错误)等问题。
4.3 大模型 推理效率对比
为进一步验证不同云电脑搭载的大模型在实际任务中的推理效率(包括响应速度、逻辑准确性及任务适配能力),我们针对性设计了两个具有代表性的推理性问题。这两个问题分别从 “语言生成逻辑性” 和 “基础数学推理” 两个维度出发,可直观反映大模型在不同类型推理任务中的表现,具体测试问题如下
问题1:请给出10句以樱桃俩字为结尾的句子。
问题2:如果晾干5件衬衫需要4小时,那么晾干20件衬衫需要多久?
本次对比实验仅选用海马云的 DeepSeek R1 14B 与 ToDesk云电脑的Qwen 32B 两款模型。未将青椒云纳入测试,主要原因是其系统未预装大模型;若需自行拉取部署,如上图所示,仅拉取过程就需 14 小时,后续还需额外搭建其他环境,整体操作耗时过长,测试便利性较差。
在本次语言生成逻辑性测试中,ToDesk云电脑搭载的Qwen 32B 大模型表现尤为突出,以全对的战绩大幅领先海马云所使用的 DeepSeek R1 14B 模型。
海马云在测试中的回答质量与效率均存在明显差距:一方面,其仅能生成两句符合测试要求的内容,在语言逻辑连贯性、信息准确性等核心评估维度上表现欠佳;另一方面,在测试过程的提问交互与回访验证环节中,该模型还频繁出现响应中断、画面卡顿的情况,不仅影响测试流程的顺畅推进,也难以满足用户对稳定生成体验的需求。
在基础数学推理测试中,ToDesk云电脑的表现十分精准:不仅正确推导出最终答案,更准确识别出题目背后的 “并行事件” 逻辑 —— 明确 “晾干 5 件衣服需 4 小时” 的核心是 “衣物可同时晾晒”,因此即便数量增加到 20 件,所需时间仍为 4 小时,推理过程完整且贴合实际场景。
反观海马云的 DeepSeek R1 14B,受限于设备算力,未能深入分析题目逻辑,仅对 “5 件 4 小时” 和 “20 件” 进行了简单乘法计算,既未识别出 “并行晾晒” 的关键前提,也未得出符合实际的完整答案,推理结果存在明显偏差。
五、综合对比与场景适配建议
综合测试结果,ToDesk云电脑、海马云、青椒云在 3A 游戏与 AI 训练两大核心场景的表现差异显著,具体总结如下:
ToDesk云电脑**:综合表现最优**
- 3A 游戏场景:跨平台兼容性最强(支持 Windows/macOS/iOS/ 安卓 / 平板 / Web 端),网络带宽(788Mbps 下载)与帧率(地平线 4 最高画质下 200-260 帧)遥遥领先,预装 3A 大作丰富;定价最低且新用户有 1 小时免费体验,性价比突出。
- AI 训练场景:AIGC 环境支持最全面(预装 ComfyUI、sd-webui 及 Qwen 32B 大模型),开箱即用;Stable Diffusion 生成图片仅需 3 秒,图像质量最优;大模型推理效率出色,语言逻辑与数学推理测试均全对。
海马云:表现中等,存在明显短板
- 3A 游戏场景:硬件配置(i7-12 核 + RTX 4070)与 ToDesk 相当,帧率(地平线 4 约 150 帧)略低,且因画面传输技术问题,最高画质下画面偏糊;预装游戏以小游戏为主,3A 覆盖不足;跨平台兼容性一般(仅支持电脑端与苹果设备)。
- AI 训练场景:支持 ComfyUI 与 DeepSeek R1 14B 大模型,但大模型量级与推理效率不及 ToDesk,数学推理仅做简单计算、语言逻辑测试仅 2 句达标,且交互中易卡顿;高性能 4090 显卡资源不足,购买时频繁显示服务器繁忙。
青椒云:综合表现垫底,体验欠佳
- 3A 游戏场景:硬件配置最弱(RTX 4060 Ti/RTX A4000),帧率(地平线 4 90-120 帧)最低,电竞资源紧张需避开高峰使用;无预装游戏,需用户自行下载;跨平台不支持 Web 端,便携性差;单位时长价格高于 ToDesk。
- AI 训练场景:AIGC 环境支持最少,仅提供 Stable Diffusion;无预装大模型,自行拉取部署需 14 小时且需额外搭环境,测试便利性差;Stable Diffusion 生成图像细节不足,复杂场景易出现人物细节错误。
结语
所以综合来看的话青椒云表现垫底,仅适配基础 AI 绘画,服务器紧张、配置弱(最高 RTX 4060 Ti),游戏与 AI 体验均差,仅适合基础需求用户;海马云处于中等,虽有基础游戏配置,但画面、AI 推理及高配置资源均有短板,适合可妥协性能的低需求用户。ToDesk云电脑凭借丰富的丰富的云电脑资源以及自家三大核心远程技术,在游戏端全平台兼容、高带宽高帧且预装 3A;AI 端预装工具与大模型,生成快、推理准;硬件多选、网络稳、性价比高。
- 好了~实测心得如上,推荐大家根据自身对游戏画质、AI 任务复杂度的需求去尝试,体验云电脑突破本地硬件限制的更多惊喜功能!