机器学习——支持向量机——硬间隔与支持向量

本文深入探讨支持向量机(SVM)的基础概念,包括超平面的公式推导、最大间隔的优化以及如何寻找最优超平面。通过数学公式和几何解释,阐述了硬间隔情况下的SVM模型,指出支持向量在模型中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇文章我们简单介绍了SVM的几种情况,这篇文章我们来对SVM的基本型进行研究。

支持向量机简述
软间隔与正则化,核函数


前言

硬间隔就是我们的数据线性可分的情况,是一种比较理想的模型,但是对于新手理解SVM很友好。本篇主要是由图片和数学公式(手写)展示,若字太丑请谅解。


一、超平面公式引出

在这里插入图片描述
我们都知道超平面的公式是 W X + b = 0 WX+b=0 W,可是为什么会是这个公式呢,而且 w w w x x x都是向量(上图中加粗了),那这是为什么呢?
在这里插入图片描述
我们从左到右的顺序来,

  • 我们首先画一个坐标轴 x 1 x_1 x1为横轴, x 2 x_2 <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值