第五天每日Leetcode刷题——135.分发糖果

这篇博客探讨了一道关于贪心算法的问题,即如何根据孩子们的评分公平地分配糖果,使得每个孩子至少得到一个糖果且评分高的孩子得到更多。作者提供了两种解决方案,一种是自己编写的,另一种是参考GitHub上高畅大佬的实现,同时介绍了C++中的`accumulate`函数用于求和。博客还强调了两次遍历策略在解决这个问题中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天其实是做了题目的 但是太简单就没写了 今天换了个刷题顺序 ,跟着GitHub上的高畅大佬刷题顺序

然后开始先刷贪心

再来回归到这题

n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。

你需要按照以下要求,给这些孩子分发糖果:

每个孩子至少分配到 1 个糖果。
相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 

这题主要考察贪心,这里的贪心策略即为,在每次遍历中,只考虑并更新相邻一 侧的大小关系。

我们只需要简单的两次遍历即可:把所有孩子的糖果数初始化为 1; 先从左往右遍历一遍,如果右边孩子的评分比左边的高,则右边孩子的糖果数更新为左边孩子的 糖果数加 1;再从右往左遍历一遍,如果左边孩子的评分比右边的高,且左边孩子当前的糖果数 不大于右边孩子的糖果数,则左边孩子的糖果数更新为右边孩子的糖果数加 1。通过这两次遍历, 分配的糖果就可以满足题目要求了。

我自己写的代码

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector <int> candy (ratings.size(), 1);
        for (int i = 0; i < ratings.size() - 1; i++)
          {
              if (ratings[i] < ratings[i + 1])
                  candy[i + 1] = candy[i] + 1;                     
          }
        for (int i = ratings.size() - 1; i > 0; i--)
           {
               if (ratings[i] < ratings[i - 1] && candy[i - 1] <= candy[i])
                  candy[i - 1] = candy[i] + 1;
           }
        int sum = 0;
        for (int i = 0; i < candy.size(); i++)
            sum += candy[i];
        return sum;

    }
};

大佬写的

int candy(vector<int>& ratings) {
int size = ratings.size();
if (size < 2) {
return size;
}
vector<int> num(size, 1);
for (int i = 1; i < size; ++i) {
if (ratings[i] > ratings[i-1]) {
num[i] = num[i-1] + 1;
}
}
for (int i = size - 1; i > 0; --i) {
if (ratings[i] < ratings[i-1]) {
num[i-1] = max(num[i-1], num[i] + 1);
}
}
return accumulate(num.begin(), num.end(), 0); // std::accumulate 可以很方便
地求和
}

这里学会的一个求和的std中的函数  accumulate 

其语法1.accumulate(start, end, initial_sum);

           2. accumulate(start, end, initial_sum, func);  在这里, func是要执行的附加操作。如minux 则为做减法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值