无约束非线性优化——最速下降法、牛顿法、共轭梯度法例题

本章为对《无约束非线性优化算法》的习题巩固。


1 最速下降法

  1. 给定初点eq?x%5E%7B%281%29%7D%5Cin%20R%5E%7Bn%7D,允许误差eq?%5Cvarepsilon%20%3E%200,置k=1;
  2. 计算搜索方向eq?d%5E%7B%28k%29%7D%3D%20-%5Ctriangledown%20f%28x%5E%7B%28k%29%7D%29,如果eq?%5Cleft%20%5C%7C%20%5Ctriangledown%20f%28x%5E%7B%28k%29%7D%29%5Cright%20%5C%7C%5Cleq%20%5Cvarepsilon停止计算;
  3. 由精确线搜索计算步长eq?%5Calpha%20_%7Bk%7D,使得
    eq?f%28x%5E%7B%28k%29%7D+%5Calpha%20_%7Bk%7Dd%5E%7B%28k%29%7D%29%3D%5Cmin_%7B%5Calpha%20%5Cgeq%200%7Df%28x%5E%7B%28k%29%7D+%5Calpha%20d%5E%7B%28k%29%7D%29
  4. eq?x%5E%7B%28k+1%29%7D%3Dx%5E%7B%28k%29%7D+%5Calpha%20_%7Bk%7Dd%5E%7B%28k%29%7Deq?k%3Dk+1,转步骤2。

用最速下降法求解:

eq?min%20%5C%3B%20%5C%3B%20%5C%3B%20f%28x%29%3Dx_%7B1%7D%5E%7B2%7D+3x_%7B2%7D%5E%7B2%7D

6038cc2689224647b2b2138d4f07648f.png

2 牛顿法

  1. 给定初点eq?x%5E%7B%281%29%7D%5Cin%20R%5E%7Bn%7D,允许误差eq?%5Cvarepsilon%20%3E%200,置k=1;
  2. 计算eq?%5Ctriangledown%20f%28x%5E%7B%28k%29%7D%29,如果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值