11. OpenCV图像转换-傅里叶变换

文章介绍了傅里叶变换的概念,用于将信号从时域转换到频域分析。在图像处理中,使用numpy的fft2和ifft2函数进行2D离散傅里叶变换和逆变换。实验代码展示了如何应用这些函数对图像进行傅里叶变换,并通过OpenCV的dft和idft进行滤波操作,包括低通和高通滤波效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶变换

傅里叶变换(Fourier Transform):通过数学的方法反向分解复杂的信号,使之成为一个个简单的正弦信号。傅里叶变换不再以时域去看待事物,而是以频域去研究事物
分类:连续傅里叶变换和离散傅里叶变换
图像处理:2D离散傅里叶变换(DFT)
  • ➤时域(时间域)🢂自变量是时间,即横轴是时间,纵轴是信号的变化(频域是时域在另一维度的映射)
  • ➤频域(频率域)🢂变量是频率,即横轴是频率,纵轴是该频率信号的幅度,(在同一时间下记录每个简单正弦信号的相位和频率,从而形成复杂信号)

  • 1. 正弦波是频域唯一存在的波形(即正弦波是对频域的描述),任何波形都能够用正弦波的组合完全且唯一的描述
    2. 频域是时域在另一维度的映射,时域和频域就是信号的两种表现方式

1. numpy中的图像傅里叶变换

二维傅里叶频率转换:np.fft.fft2()
结果偏移:np.fft.fftshift()
二维傅里叶逆变换(将图像还原):np.fft.ifft2()
  • 傅里叶变换
  • np.fft.fft2(a, s=None, axes=(-2, -1), norm=None)
  • 傅里叶逆变换
  • np.fft.ifft2(a, s=None, axes=(-2, -1), norm=None)
参数含义作用
a数组图像转换时(直接输入灰度图像)
s整数序列输出图片(数组)的形状 (s[0] x轴, s[1] y轴)的数值
axes计算FFT的轴一个元素序列意味着执行一维FFT
norm规范化模式(转换方向)“backward”,“ortho” or “forward”(“向后”,“正交”,“向前”)
  • np.fft.fftshift(x, axes=None)
参数含义
x输入数组(图像处理时为经过傅里叶转换的频域幅度图数组)
axes计算的轴(int或者shape元组)
  • 实验代码
# 使用numpy进行图像的傅里叶变换
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('../picture/14.jpg', 0)
print(img.shape)

# 进行傅里叶变换(返回值:复数数组)
ff = np.fft.fft2(img)
# 将低频部分移到图像中央,便于观察
fshift = np.fft.fftshift(ff)
# 转换为(0-255)的图像值
img_fft = 20*np.log(np.abs(fshift))

# 傅里叶逆变换(将图像还原)
iff = np.fft.ifft2(fshift)
img_ifft = np.abs(iff)

plt.figure(figsize=(15,8), dpi=100)
plt.subplot(131),plt.imshow(img, cmap = 'gray')
plt.title('img'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(img_fft, cmap = 'gray')
plt.title('Fourier'), plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(img_ifft, cmap = 'gray')
plt.title('i_Fourier'), plt.xticks([]), plt.yticks([])
plt.show()
  • 运行结果

在这里插入图片描述

2. OpenCV傅里叶变换

在原图中进行(低频,高频)滤波不易操作,通过傅里叶变换映射到频谱中之后更易于对图像的操作(提高速度和效率)
傅里叶变换的作用:图像的傅里叶降噪、JPEG图像压缩技术、模式识别等
高频:变化剧烈的灰度分量(边界轮廓线)
低频:变化缓慢的灰度分量(不易区分且较为相近的区域)
  • cv2.dft(src[, dst[, flags[, nonzeroRows]]])
  • cv2.idft(src[, dst[, flags[, nonzeroRows]]])
参数含义
src输入图片(数组)
dst输出结果(可选)
flags转换标志
  • flags
    • DFT_COMPLEX_OUTPUT:得到一个复数形式的矩阵;
    • DFT_REAL_OUTPUT:只输出复数的实部;
    • DFT_INVERSE:进行傅里叶逆变换;
    • DFT_SCALE:是否除以 MxN (M 行 N 列的图片,共有有 MxN 个像素点);
    • DFT_ROWS:输入矩阵的每一行进行傅里叶变换或者逆变换。
  • cv2.magnitude(x, y[, magnitude])

傅里叶变换的双通道结果转换为 0 到 255 的范围

参数含义
x浮点型 X 坐标值,实部
y浮点型 Y 坐标值,虚部
  • 实验代码
# OpenCV中的图像傅里叶变换
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('../picture/14.jpg',0)
print("图像数据类型:", img.dtype)

# 需要现将图片转换为float32
img_float32 = np.float32(img)
print("转换后数据类型:", img_float32.dtype)

# 进行傅里叶变换
dft = cv.dft(img_float32, flags = cv.DFT_COMPLEX_OUTPUT)
# 将低频部分移到中央
dft_shift = np.fft.fftshift(dft)
# 转换为图像数据类型(0-255)
img_log = 20*np.log(cv.magnitude(dft_shift[:, :, 0],dft_shift[:, :, 1]))

rows, cols = img.shape
# 中心位置
rows_half, cols_half = int(rows/2), int(cols/2)

"""
低通滤波处理
"""
# 低频掩膜生成(低通滤波)
mask_bom = np.zeros((rows, cols ,2), dtype= np.uint8)
mask_bom[rows_half - 30:rows_half + 30,cols_half - 30:cols_half + 30] = 1
# 进行滤波处理
fshift_bom = dft_shift * mask_bom
# 傅里叶逆变换
iimg = cv.idft(np.fft.ifftshift(fshift_bom))
iimg = cv.magnitude(iimg[:, :, 0], iimg[:, :, 1])

"""
高通滤波处理
"""
# 高通掩膜生产
mask_top = np.ones((rows, cols, 2), np.uint8)
mask_top[rows_half - 30:rows_half + 30, cols_half - 30:cols_half + 30] = 0

fshift_top = dft_shift * mask_top
img_back = cv.idft(np.fft.ifftshift(fshift_top))
img_back = cv.magnitude(img_back[:, :, 0],img_back[:, :, 1])

plt.figure(figsize = ( 10, 8), dpi = 100)
plt.subplot(221), plt.imshow(img, cmap= 'gray')
plt.title('Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(img_log, cmap= 'gray')
plt.title('Magnitude'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(iimg, cmap= 'gray')
plt.title('Magni'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back, cmap= 'gray')
plt.title('Back'), plt.xticks([]), plt.yticks([])
plt.show()
  • 运行结果
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一半不眠次日si记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值