序言:下面是以提出问题,然后回答的形式逐步深入解析这些问题,从而让你对分布式锁、普通锁,微服务架构和分布式系统等之间的理解再进一步。
目录
第二个问题:分布式锁和普通的锁(例如:java中的ReentrantLock锁机制),这两者有什么不同?
第三个问题:微服务架构和分布式系统两者之间是有什么关联吗,两者的区别是什么?
第四个问题:Nacos、Sentinel、SpringCloudGateway,Seata、Skywalking,这些组件都是分布式系统中的技术栈吗?而不是微服务中的技术栈
第六个问题:分布式锁和《分布式系统、微服务架构》之间的关系?
第七个问题:分布式事务和《分布式系统。微服务架构》之间的关系?
第一个问题:什么是分布式锁?
分布式锁是一种机制(提出新的问题,其他的锁也都是机制吗,答案:是的;比如Redis的互斥锁就是一种实现机制,而数据库中的锁是实际的锁,但底层其实依旧是一种锁机制罢了)
作用于分布式系统中协调多个进程或服务实例对共享资源的访问。
保证:当多个节点并发访问共享资源的,不会出现数据不一致的情况;
保证:当多个节点同时尝试修改同一份数据时,确保只有一个节点能够成功执行该操作;
保证:为开发者提供一种简单的并发控制机制,无需关心底层的开发细节;《这个理解的有点问题,之后详细讨论?》
这里的分布式锁有很多种类型,常见的有:《为什么没有Java中的ReentrantLock锁机制,在下面的问题中将会剖析》
-
基于数据库的锁:使用数据库提供的锁机制。
-
基于消息队列的锁:利用消息队列实现互斥访问;
-
基于缓存的锁:如Redis提供的SETNX 或者 Lua脚本实现的锁。
-
基于ZooKeeper的锁:ZooKer提供了原生的分布式锁实现。
具体例子
下面通过一个具体的例子来说明如何使用基于 Redis 的分布式锁:
场景描述
假设你正在开发一个电子商务网站,需要处理库存扣减操作。当用户下单时,需要确保库存数量足够,并且在扣减库存时不会出现并发问题。例如,如果有两个用户几乎同时下单购买同一件商品,需要确保不会出现超卖的情况。
实现步骤
-
获取锁:在扣减库存前,尝试获取一个唯一的分布式锁。
-
执行操作:获得锁后,执行扣减库存的操作。
-
释放锁:完成操作后,释放锁,让其他进程可以继续执行。
通过这种方式,可以确保在并发环境下,库存扣减操作不会出现问题,从而保证数据的一致性和安全性。这就是分布式锁在实际应用中的一个具体例子。《这里不在举例实际的代码,可以想象的到》
第二个问题:分布式锁和普通的锁(例如:java中的ReentrantLock锁机制),这两者有什么不同?
设计目的
-
ReentrantLock:主要用于单个 JVM 内部线程间的同步。它是一种高级锁,提供了比
synchronized
更多的功能,比如公平锁、非公平锁、可中断等待等。 -
分布式锁:用于分布式系统中,解决多个 JVM 或者多个服务器间对共享资源的互斥访问问题。它必须能够在跨多个节点的情况下保证数据的一致性和安全性。
应用场景
-
ReentrantLock:适用于单机多线程环境下的资源共享问题,比如并发访问本地内存中的数据结构、共享资源等。
-
分布式锁:适用于分布式系统中的资源共享问题,比如多个服务器共同管理一个数据库、文件系统或其他共享资源。
实现机制
-
ReentrantLock:
-
使用 JVM 的内部机制实现,通常利用 CAS(Compare and Swap)指令来实现原子操作。
-
利用 Java 的并发包
java.util.concurrent.locks
提供的 API 来实现锁的功能。 -
通常依赖于 JVM 的内存模型和线程调度机制。
-
-
分布式锁:
-
依赖于外部的协调服务(如 Redis、ZooKeeper、ETCD 等)来实现。
-
利用这些服务提供的特性(如原子操作、持久化存储等)来实现锁的获取、保持和释放。
-
必须考虑到网络延迟、节点失败等情况,因此实现通常更为复杂。
-
总结
-
ReentrantLock 是针对单机多线程环境下的同步问题设计的,而 分布式锁 是针对分布式系统中的资源共享问题设计的。
-
ReentrantLock 依赖于 JVM 的内部机制,而 分布式锁 依赖于外部的协调服务。
-
ReentrantLock 的实现相对简单,而 分布式锁 的实现更为复杂,需要考虑更多因素。
在选择使用哪种锁时,应根据具体的应用场景和需求来决定。如果是在单机多线程环境下,使用 ReentrantLock
就足够了;而在分布式系统中,则需要使用分布式锁来确保多个节点之间的互斥访问。
第三个问题:微服务架构和分布式系统两者之间是有什么关联吗,两者的区别是什么?
微服务架构
微服务架构是一种软件架构风格,它提倡将单个应用程序开发为一组小型、独立的服务。每个服务运行在其自己的进程中,并通过轻量级通信机制(通常是HTTP/REST或消息队列)相互协作。每个服务都是围绕业务能力构建的,并且能够独立部署、扩展和维护。
分布式系统
分布式系统是指由多个相互连接的计算机组成的系统,这些计算机通过网络互相通信并协作完成任务。分布式系统可以包含各种组件和服务,它们分布在不同的主机上,通过网络通信进行交互。分布式系统的设计需要考虑网络延迟、故障恢复、数据一致性等问题。
关联
-
架构层次:
-
微服务架构通常是在分布式系统的基础上构建的。也就是说,微服务架构中的每个服务通常都是分布式系统中的一个组件或服务。
-
-
技术实现:
-
分布式系统的技术栈可以应用于微服务架构中,例如负载均衡、服务发现、配置管理、监控和日志收集等。
-
-
设计原则:
-
微服务架构遵循的一些设计原则(如服务自治、独立部署、容错性设计等)也是分布式系统设计中重要的考虑因素。
-
区别
-
概念层面:
-
微服务 是一种架构风格,侧重于如何组织和设计应用程序,使其能够更好地适应不断变化的需求,并支持敏捷开发和持续交付。
-
分布式系统 是一种更广泛的计算模型,涵盖了多个节点之间的通信、数据共享和协同工作,其目标是在不可靠的网络环境中提供可靠的服务。
-
-
关注点:
-
微服务 主要关注的是如何将一个大型的、复杂的系统分解成一系列小而独立的服务,这些服务可以独立开发、测试、部署和扩展。
-
分布式系统 更加关注的是如何在分布式环境中解决诸如数据一致性、高可用性、容错性等问题,以及如何设计系统以应对网络分区、延迟等挑战。
-
-
规模与复杂度:
-
微服务 架构通常应用于企业级应用,旨在提高开发效率和灵活性。
-
分布式系统 可能涵盖更大规模的系统,不仅限于企业内部,还可能包括云服务、物联网设备等。
-
-
技术选型:
-
微服务 架构可能使用诸如Docker容器、Kubernetes集群管理、API网关等技术。
-
分布式系统 设计可能涉及更广泛的技术栈,包括但不限于消息队列、分布式数据库、分布式文件系统、一致性协议等。
-
-
实现细节:
-
微服务 架构需要解决的问题包括服务发现、负载均衡、API网关、断路器模式、限流、熔断等。
-
分布式系统 需要处理的问题则更加基础,比如CAP定理(Consistency, Availability, Partition tolerance)、分布式事务、分布式锁、数据复制与同步等。
-
示例
-
微服务:在一个电商平台上,订单服务、库存服务、支付服务等各自作为一个微服务独立运行,它们通过API接口进行通信。每个服务都可以独立部署和扩展。
-
分布式系统:在云计算环境中,多个数据中心之间的数据同步、分布式数据库的副本分布、负载均衡器的配置等,这些都是分布式系统设计的一部分。
总结来说,微服务架构是在分布式系统的基础上发展起来的一种特定的应用架构风格,它强调服务的独立性和松耦合,而分布式系统则更广泛地涵盖了多个节点之间的通信和协作。在实际应用中,微服务架构的设计和实现通常需要依赖于分布式系统的技术和原理。
第四个问题:Nacos、Sentinel、SpringCloudGateway,Seata、Skywalking,这些组件都是分布式系统中的技术栈吗?而不是微服务中的技术栈
这些组件确实可以归类为分布式系统中的技术栈,但它们同样也是微服务架构中的关键技术组件。下面我会逐一解释它们在分布式系统和微服务架构中的角色和用途:
Nacos
-
功能:Nacos 是阿里巴巴开源的服务发现与配置中心。
-
分布式系统中的角色:在分布式系统中,Nacos 可以帮助实现服务发现、配置管理等功能,使得各个服务节点能够动态地找到彼此并获取最新的配置信息。
-
微服务中的角色:在微服务架构中,Nacos 用于管理服务注册与发现,以及集中化的配置管理,这对于微服务的动态发现和快速部署至关重要。
Sentinel
-
功能:Sentinel 是阿里巴巴开源的流量控制组件,提供流量控制、熔断降级、系统负载保护等多种功能。
-
分布式系统中的角色:在分布式系统中,Sentinel 可以帮助保护系统免受突发流量的冲击,通过流量控制和熔断机制确保系统的稳定性和可用性。
-
微服务中的角色:在微服务架构中,Sentinel 用于实现服务级别的流量控制、熔断、限流等,确保单个服务在面对高峰流量时不会崩溃,从而保障整个系统的健壮性。
Spring Cloud Gateway
-
功能:Spring Cloud Gateway 是一个基于 Spring Framework 5、Project Reactor 和 Spring Boot 的 API 网关。
-
分布式系统中的角色:在分布式系统中,API 网关充当着系统的入口点,负责路由请求到正确的服务,并可以实现负载均衡、安全认证等功能。
-
微服务中的角色:在微服务架构中,Spring Cloud Gateway 作为统一的入口,负责路由、限流、鉴权等工作,简化了客户端与微服务之间的交互。
Seata
-
功能:Seata 是一款开源的分布式事务解决方案,提供高性能和框架透明的分布式事务支持。
-
分布式系统中的角色:在分布式系统中,Seata 可以解决分布式事务的问题,确保在分布式环境中数据的一致性。
-
微服务中的角色:在微服务架构中,Seata 用于解决跨服务的事务一致性问题,使得微服务能够像单体应用一样处理事务。
SkyWalking
-
功能:SkyWalking 是一个可观测性平台,提供应用性能监控(APM)和网络遥测功能。
-
分布式系统中的角色:在分布式系统中,SkyWalking 可以帮助监控系统的性能、追踪请求路径、发现性能瓶颈等。
-
微服务中的角色:在微服务架构中,SkyWalking 用于收集微服务之间的调用链路信息,帮助开发者快速定位问题并优化系统性能。
总结
这些组件虽然在分布式系统中都有其重要作用,但它们同时也是微服务架构的关键组成部分。微服务架构本身就是建立在分布式系统的基础之上的,因此这些技术栈既服务于分布式系统的一般需求,也特别适用于微服务架构中的特定场景。
在微服务架构中,这些组件通常用来解决服务发现、配置管理、流量控制、分布式事务处理、性能监控等问题,这些都是构建一个健壮、可靠的微服务系统不可或缺的部分。因此,可以说这些组件既是分布式系统的技术栈,也是微服务架构中的技术栈。
第五个问题:分布式计算框架和分布式框架的区别?
1. 首先要知道分布式框架有哪些?
分布式框架是指那些能够帮助开发者构建、部署和管理分布式系统的软件工具或平台。这些系统通常由多个独立的组件组成,这些组件运行在不同的机器上,通过网络互相通信协调工作。以下是一些常见的分布式框架及其功能概述:
-
Apache Hadoop:
-
Hadoop 是一个让数据处理应用能够在大量硬件上运行的大规模数据处理框架。它包括了Hadoop Distributed File System (HDFS) 和 MapReduce 框架,用于存储和处理大规模数据集。
-
-
Apache Spark:
-
Spark 是一个通用的大规模数据处理引擎,提供了比MapReduce更快的数据处理速度。它支持多种计算模型,如批处理、交互式查询、流处理等,并且可以运行在Hadoop、Apache Mesos或Kubernetes之上。
-
-
Apache Storm:
-
Storm 是一个实时计算系统,主要用于处理流式数据。它可以保证每个消息都能被正确处理,并且能够水平扩展以处理巨大的数据流。
-
-
Apache Flink:
-
Flink 是一个流处理框架,同时也支持批处理。它的设计是为了提供无边界和有界数据流的处理能力,并且保证了事件时间处理和精确一次的状态一致性。
-
-
Apache Kafka:
-
Kafka 是一个分布式的流处理平台,它是一个发布订阅消息系统,用于构建实时数据管道和流应用。Kafka 可以处理大量的实时数据馈送,并且可以被用来创建流数据应用。
-
-
Apache ZooKeeper:
-
ZooKeeper 提供了一组服务,简化了分布式应用的开发。它提供的功能包括配置维护、命名、提供分布式同步以及提供组服务。
-
-
Apache Cassandra:
-
Cassandra 是一个高性能的分布式NoSQL数据库系统,设计用于处理大量数据跨多数据中心的情况。它提供了高可用性而不牺牲性能。
-
-
Docker Swarm/Kubernetes:
-
Docker Swarm 和 Kubernetes 是容器编排工具,用于自动化部署、扩展和管理容器化的应用。虽然不是传统的数据处理框架,但在分布式系统中用于管理微服务架构非常有用。
-
-
Apache Mesos:
-
Mesos 是一个集群管理器,旨在为数据中心提供一个共享的、弹性的资源层。它支持多种框架,使得这些框架可以在同一个集群中高效地共存。
-
这些框架各有特点,选择哪个框架取决于你的具体需求,比如数据处理的速度要求、实时性、可扩展性等。每种框架都有其特定的应用场景,可以根据项目需求来决定使用哪一种。
2. 然后要知道Nacos、Sentinel、SpringCloudGateway,Seata、Skywalking,这些组件可以是否都划分为分布式框架的一部分?
答案:是的,但是比较特殊,这些也可以是微服务架构的技术栈。
Nacos、Sentinel、Spring Cloud Gateway、Seata 和 SkyWalking 都是支持分布式系统的关键组件,但它们各自扮演的角色有所不同。我们可以根据它们的主要功能将它们分类如下:
-
Nacos:
-
主要功能:服务发现、配置管理、动态 DNS 服务。
-
分类:作为服务发现和配置中心,Nacos 可以被视为分布式系统的基础组件之一,它帮助构建和维护分布式系统的服务层和配置层。
-
-
Sentinel:
-
主要功能:流量控制、熔断降级、系统保护和热点防护。
-
分类:Sentinel 是一个用于保护服务的组件,它确保在高并发情况下系统仍能稳定运行。因此,它也可以被视为分布式系统中的一个关键组件,尤其是对于需要高可用性和可靠性的系统。
-
-
Spring Cloud Gateway:
-
主要功能:API 路由、过滤器链、限流、监控等功能。
-
分类:Spring Cloud Gateway 是一个API网关,它充当了外部请求进入微服务架构的第一个接触点。它可以被视为分布式系统中的入口组件,负责路由请求到正确的服务,并提供安全、监控等功能。
-
-
Seata:
-
主要功能:分布式事务管理。
-
分类:Seata 是一个用于处理分布式事务的框架。它帮助确保在一个分布式环境中,跨多个服务的操作能够保持一致性和原子性。因此,它可以被视为分布式系统中确保数据完整性和一致性的重要组件。
-
-
SkyWalking:
-
主要功能:应用性能监控(APM)、追踪分析、诊断问题等。
-
分类:SkyWalking 是一个应用性能管理工具,用于监控和诊断分布式系统中的问题。它可以视为分布式系统中的监控和追踪组件,帮助开发者和运维人员理解系统行为并快速定位问题。
-
总结起来,这些组件都可以被认为是分布式框架的一部分,因为它们共同支持了分布式系统的构建、运行和维护。然而,它们各自侧重于不同的方面,如服务发现(Nacos)、流量控制(Sentinel)、API路由(Spring Cloud Gateway)、事务管理(Seata)和性能监控(SkyWalking)。因此,它们通常被看作是构建分布式系统时不可或缺的辅助工具或组件,而不是像 Hadoop 或 Spark 这样的全面的分布式计算框架。
3. 分布式计算框架和分布式框架,指的是一个东西吗?
-
分布式计算框架:
-
这个术语通常特指那些专注于解决计算密集型任务或者大数据处理的框架。它们的主要目标是将计算任务分布在多个节点上执行,以提高效率、减少响应时间和增加容错能力。例如,Apache Hadoop(特别是它的MapReduce组件)就是一个典型的分布式计算框架,它专为处理大规模数据集而设计。
-
-
分布式框架:
-
这个术语更为宽泛,涵盖了所有帮助开发者构建分布式系统的工具和平台。分布式系统是由相互协作的对等组件组成的集合,这些组件可以位于网络中的不同位置。分布式框架不仅包括专门的计算框架,还可以包括用于协调服务、实现分布式数据库、处理消息队列、提供服务发现等功能的工具。例如,Apache ZooKeeper 是一个分布式框架,但它主要用于提供协调服务,而不是直接进行计算任务。
-
因此,可以说所有的分布式计算框架都是分布式框架的一种,但并不是所有的分布式框架都是为了计算任务而设计的。例如,Kubernetes 是一个用于管理和编排容器化应用的分布式框架,但它不是一个专门的计算框架;而Apache Flink 既是一个分布式框架也是一个分布式计算框架,因为它提供了一个分布式环境下的流处理和批处理计算引擎。
第六个问题:分布式锁和《分布式系统、微服务架构》之间的关系?
分布式系统和微服务架构
当你提到“分布式系统”和“微服务架构”,实际上是在讨论如何在一个分布式环境下构建和管理多个独立的服务。这些服务通常运行在不同的服务器或容器上,并通过网络进行通信。
我理解的是:当这个应用是使用的微服务架构,并且使用分布式系统完成部署时,那么在正常情况下处理,各种业务是没问题的,但是
当出现特殊情况时,就出现问题了;例如:秒杀购物就是如此,高并发下多个进程或服务实例对同一资源的访问处理,就无法像正常的
业务一样了,牵扯到了数据一致性问题,并发安全等问题;因此提出了分布式锁,这种机制;通过它
保证1:当多个节点并发访问共享资源的,不会出现数据不一致的情况;
保证2:当多个节点同时尝试修改同一份数据时,确保只有一个节点能够成功执行该操作;
这就是它们之间的关系;
总结:分布式锁是为了应对在分布式系统中多个服务实例并发访问共享资源时可能出现的问题。它通过限制对共享资源的访问权限来保证数据的一致性和安全性。在微服务架构中,分布式锁是一种常用的解决方案,尤其是在需要处理高并发和数据一致性的场景中。
第七个问题:分布式事务和《分布式系统。微服务架构》之间的关系?
我理解的是:分布式事务,更多的指的是一个业务功能,需要多个微服务通过通信,协调完成整个业务;
并且需要保证这个业务功能,都是持有原子性、一致性、隔离性、持久性等这些特性;因此需要使用分布式事务完成(普通的事务已经无法适应这种分布式环境了);
然后有相关的分布式框架组件可以完成这一需求:Seata,通过两阶段协议完成整个操作。
这就是它们之间的关系;
总结:
以上是我对其的个人理解,如果有不对的地方,或者理解有偏差的地方,欢迎各位网友给出指正,
我的博客任务就是解决各种疑难杂症,如果还有其他问题可以到我的主页查看
并且可以留言,我会不时的进行解决问题。
遇见你是我的幸运,希望下次再见 bye