ECCV2022:Towards Sequence-Level Training for Visual Tracking的论文复现问题之找不到checkpoint问题

本文记录了解决使用pytracking进行目标跟踪时遇到的Nomatchingcheckpointfilefound错误的过程。作者通过调整代码中模型路径的指定方式最终解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 当我在测试这篇论文时候出现了这样的问题:

我是用otb100测试的,但是设置好路径后,还是报错说我:

No matching checkpoint file found

然后我就很恼火,我明明下载了那些.pth模型了,他还说我找不到checkpoint,于是,我就去搜问题,网上有说法

1.是我的local.py设置的路径问题,但是我设置了绝对路径后,还是报这样的错,故排除

2.还有说:改数据集的话,tranining_setting/transt.py里没有用的的数据集要注释掉,但是其实是不用的

3.让我看pytracking 的help 的,但是我用了那个方法还是不行

于是,我只能踏上漫长的调试代码之路

终于找到了pytracking/features/net_wrappers.py下的

self.net = load_network(self.net_path, **self.net_kwargs)

该传的东西没传进去,所以需要改成如下:如果是用slt_transt的话,把他的.pth文件直接复制粘贴替换self.net_path,例如:

self.net = load_network('/home/lsw/SOT/SLTtrack-master/checkpoints/ltr/slt_transt.pth', **self.net_kwargs)

然后在run一下那个run_tracker.py就可以进行测试了捏

<think>好的,我现在需要回答用户关于PromptDet是否基于YOLO开发的问题。首先,我应该回顾一下用户提到的论文,即ECCV 2022的PromptDet。根据之前提供的引用信息,代码仓库在GitHub上,可能需要查看其代码结构或者论文中的方法部分。 用户的问题很明确,询问是否基于YOLO。我需要确认PromptDet的架构。首先,YOLO是一种单阶段的目标检测框架,而PromptDet的论文标题提到了开放词汇检测,这可能涉及到使用视觉语言模型,比如CLIP。根据常见的开放词汇检测方法,许多工作会结合CLIP进行特征提取,而检测框架可能采用Faster R-CNN或类似的结构,因为需要区域建议。 接下来,我需要查看PromptDet的代码仓库,看看其模型实现是否使用了YOLO的主干网络或者检测头。根据提供的GitHub链接,假设代码结构中没有YOLO的典型组件(如Darknet或YOLO的head结构),而是基于其他框架如Detectron2,这可能提示它并非基于YOLO。 另外,论文的方法部分应该描述其架构选择。如果论文中提到使用了两阶段检测器,或者引用了Faster R-CNN的相关工作,那么可以排除YOLO。同时,PromptDet可能利用视觉提示(prompt)机制,这在YOLO中并不常见,而更多见于基于Transformer或两阶段的方法中。 还需要考虑是否有其他文献指出PromptDet与YOLO的关系。如果现有的引用或相关研究没有提到YOLO作为基础,那么更可能它是基于其他框架。综合这些信息,应该得出结论:PromptDet并非基于YOLO,而是可能使用其他检测架构结合CLIP等模型。</think>PromptDet (ECCV 2022) 并非基于 YOLO 开发。根据论文和代码分析,其核心技术架构采用了两阶段目标检测框架与视觉语言模型结合的方案,具体特点如下: 1. **主干网络选择** 使用ResNet或CLIP视觉编码器作为主干网络,而非YOLO系列的Darknet架构。其多尺度特征金字塔设计更接近Faster R-CNN风格[^1]。 2. **区域建议机制** 采用RPN(Region Proposal Network)生成候选区域,这与YOLO单阶段直接预测边界框的机制存在本质区别[^1]。 3. **开放词汇实现** 通过CLIP文本编码器生成类别文本嵌入,与视觉特征进行相似度匹配,这种设计需要精细的区域特征提取能力,更适配两阶段检测框架[^1]。 ```python # PromptDet代码片段显示其基于Detectron2实现 from detectron2.modeling import build_model class PromptDet(nn.Module): def __init__(self, clip_model, detector_cfg): self.backbone = build_backbone(detector_cfg) # Detectron2标准组件 self.proposal_generator = build_proposal_generator(detector_cfg) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值