人形机器人指南(五)传感

五、传感系统——人形机器人的“五感”

人形机器人的行动力和智能源于其感知世界的能力。传感系统如同人类的感官系统,通过物理信号采集与数字化转换,为机器人的控制决策提供数据支撑。它分为本体感知(了解自身状态)和环境感知(认识外部世界)两大范畴。本章将系统解析人形机器人所需的关键传感器类型、融合原理以及应对实际应用中噪声与干扰的鲁棒性设计策略。

5.1 本体感知——身体的“内感觉”

本体感知是机器人理解自身运动姿态、受力状态的核心,是实现精确运动控制和安全性的基础。

  • 关节位置传感器 (Joint Position Sensors):

    • 功能: 实时测量各关节的角度或位移。

    • 类型与原理:

      • 旋转编码器 (Encoder): 最核心、最广泛应用的技术。

        • 增量式: 通过光栅/磁栅计数脉冲测量相对位移。需寻零(原点复位),成本低、抗干扰强(配对比特通道)。

        • 绝对式: 输出独特的格雷码或串行数字信号(如SSI, BiSS, EnDat)表征绝对角度位置。最关键的优势: 上电即知位置,无需寻零,系统更安全可靠。广泛应用于所有需要绝对位置信息的关节(尤其承重关节)。

      • 电位器 (Potentiometer): 通过滑动触点电阻变化反映角度/位移。优点: 模拟输出、成本极低、结构简单。致命缺点: 有磨损、寿命有限、分辨率精度低、存在死区。在低成本、非关键或短寿命平台(如教育机器人)的次要关节可见,但在高端人形中已被编码器完全取代。

    • 要求: 高精度(分辨率<0.1°)、高可靠性、低延迟、抗冲击振动。

  • 关节速度传感器 (Joint Velocity Sensors):

    • 功能: 测量关节角速度/线速度。

    • 实现方式: 很少使用独立传感器。

      • 从位置信号微分: 最常用方法。但会放大位置噪声(需滤波处理)。

      • 编码器中的测速通道 (Tacho Output): 部分编码器提供模拟/数字测速输出。

      • 电机反电动势 (Back-EMF): 通过测量无刷电机定子线圈的感应电动势估测转速(精度相对较低)。

  • 关节力矩/力传感器 (Joint Torque/Force Sensors):

    • 功能: 感知关节驱动轴或末端所受扭矩/力。是实现精细力控、柔性交互、碰撞检测的关键!

    • 原理与类型:

      • 应变片式扭矩传感器 (Strain Gauge Based):

        • 在弹性体(关节轴或法兰)上粘贴应变片组成惠斯通电桥。弹性体受力/扭矩产生微变形->应变片电阻变化->电桥输出差分电压信号->经放大滤波后转换为数字信号。

        • 优点: 技术成熟、精度高(可达0.1%FS)、量程范围广、集成度可做高(如空心轴设计)。

        • 缺点: 敏感于温度漂移(需精密温度补偿电路或算法)、长期蠕变、对交叉耦合(如弯矩)敏感。

        • 应用: 高端人形机器人关节标配(如Atlas、HRP、Optimus的髋、膝、踝、肩、肘等主要关节)。模块化关节常将力矩传感器与减速器输出轴集成(如Optimus关节模块)。

      • 光学式扭矩传感器: 利用光纤布拉格光栅(FBG)或磁弹效应测量弹性体变形。优点:抗电磁干扰强、可多参数测量、尺寸潜力小。缺点:成本高、解调系统复杂。仍在研究验证阶段。

    • 重要性: 直接力感知是实施阻抗控制、导纳控制、协作装配任务、安全接触、自适应抓取的核心依据。

  • 六维力/力矩传感器 (6-Axis F/T Sensors):

    • 功能: 测量作用于其安装点上的三维力 (Fx, Fy, Fz) 和三维力矩 (Mx, My, Mz)。

    • 原理: 高度复杂化的应变片技术。在特殊设计的弹性体结构(如十字梁式、平行梁式、筒式)上,精密排布多组应变片阵列。

    • 核心用途: 主要安装于

      • 手腕: 直接感知手部与被操作物体间的交互力/力矩(抓取力、操作阻抗等),是实现灵巧操作和精确力控的终极感官。是所有追求高水平操作能力的平台(如Optimus, HRP, Atlas)的手腕标配传感器。

      • 脚踝/足底: 精确测量足与地面间的相互作用力(Ground Reaction Force, GRF),是双足步行稳定性(零力矩点ZMP计算)、步态优化、地形适应感知、跌倒预警的重要输入(如HRP, Atlas)。

    • 要求: 极高精度、刚性(尽量减少对机械性能的影响)、抗过载、低交叉耦合误差。国内如坤维、宇立(SRI)等传感器企业已达到国际先进水平。

  • 惯性测量单元 (Inertial Measurement Unit - IMU):

    • 功能: 感知机体整体的角速度和线加速度(非重力加速度)。结合算法可推算姿态(偏航角、俯仰角、横滚角)。

    • 组成:

      • 陀螺仪 (Gyroscope): 测量三个轴的角速度(ωx, ωy, ωz)。核心器件:微机电系统 (MEMS) 陀螺仪(主流,基于科里奥利效应),高端采用光纤陀螺 (FOG) 或环形激光陀螺 (RLG)(精度更高、成本昂贵、体积大)。

      • 加速度计 (Accelerometer): 测量三个轴的线加速度(ax, ay, az)。核心器件:MEMS 加速度计(基于质量块-电容检测)。

    • 核心位置: 安装在机器人躯干重心附近的核心保护壳体内。

    • 核心作用: 整体姿态估计、运动状态(速度/位置积分存在漂移)、平衡控制反馈、传感器融合的基础。是动态行走不可或缺的“内耳”。高性能IMU通常集成温度传感器用于实时补偿。

5.2 环境感知——世界的“外感觉”

环境感知赋予机器人理解周围空间、物体、人以及环境变化的能力,是智能行为的基础。

  • 视觉传感器 - 机器人的“眼睛”:

    • RGB-D 相机 (RGB-D Camera): 核心三维感知设备。

      • 原理: 同时获取彩色图像 (RGB) 和深度图 (Depth)。

      • 主流技术:

        • 结构光 (Structured Light): 如 Microsoft Kinect v1, Intel RealSense D4xx。主动投射编码图案->计算形变获取深度。优点: 精度高(短距离)、相对低成本、低光照可用。缺点: 室外强光干扰大,远距离精度低。

        • 双目立体视觉 (Stereo Vision): 如 Intel RealSense D4xx(融合)、ZED 相机。模拟人眼视差计算深度。优点: 无主动光源限制、室外表现好。缺点: 依赖纹理,低纹理区域效果差,计算开销相对大。

        • 飞行时间法 (ToF - Time of Flight): 如 PMD, ST, TI 传感器。发射调制光脉冲->测量光往返时间计算深度。优点: 抗干扰强、精度随距离衰减慢。缺点: 成本较高、功耗较大、多机干扰问题。

      • 作用: 三维环境重建 (SLAM)、物体识别与分割、障碍物检测与避碰、手势识别、人脸识别、操作引导。是空间理解与人机交互的核心传感器。广泛应用于头部或胸部。

    • LiDAR (Light Detection and Ranging):

      • 原理: 发射激光脉冲(机械旋转式/固态如MEMS, OPA, Flash)->接收反射光->测量时间差计算距离(点云)。提供高精度、长距离、高分辨率的距离信息。

      • 优点: 测距精度高、测程远(可达百米)、不受光照影响、能生成精确环境几何结构(点云)。

      • 缺点: 成本高(尤其高线数机械式)、功耗大、透明/吸光/镜面物体效果差、雨雾天性能下降、点云缺乏语义信息(通常需融合视觉)。

      • 作用: 精确导航定位、建图、大范围避障、地形地形测绘。常用于头部或较高位置以扩大视野。特斯拉Optimus选用纯视觉路线成为特例。

    • 鱼眼/广角摄像头 (Fisheye/Wide FOV Camera):

      • 作用: 提供宽视角甚至全景覆盖(>180°),特别适合近身环境监控、避障(尤其盲区)、人类活动感知。常作为补充传感器安装在足踝、腰部、背部等位置。

  • 触觉传感器 (Tactile Sensors): 机器人的“皮肤”

    • 功能: 感知接触、压力分布、剪切力、纹理甚至温度。

    • 核心载体: 主要部署于手部和足底!

    • 类型与原理:

      • 电阻式阵列: 通过阵列式柔性电极和压阻材料,测量局部压力变化(电阻变化)。成熟度高。

      • 电容式阵列: 测量电极间因接触变形导致的电容变化。灵敏度高、分辨率潜力高。

      • 光学式阵列: 利用摄像头捕捉弹性光学层(含散射点或Marker)受压缩时的内部变形图像,计算压力分布。分辨率高、动态范围广,但较厚。

      • 压电式/压电聚合物 (PVDF): 利用压电效应直接产生电荷输出。响应快(微秒级),适合动态接触/振动传感(如抓滑检测)。

    • 挑战与前沿: 柔性集成、高密度、多模态(压力+剪切+温度)、鲁棒性、信号处理(空间大阵列数据)。国内如中科院北京纳米所、南科大等在柔性电子触觉方向有国际领先研究。

  • 其他环境传感器:

    • 超声波传感器 (Ultrasonic Sensors): 利用发射/接收超声波时间差测距。优点: 成本低、测距不受颜色/光照影响、对光透明物体有效(玻璃)。缺点: 精度分辨率低、易受声波反射干扰、探测角度宽导致定位模糊。作用: 短距离廉价障碍物感知、地面坑洞探测(足底安装)、液位检测。

    • 红外传感器 (IR Sensors): 分为主动式(发射接收红外光测距,类似ToF但成本低精度低)和被动式(仅接收环境热辐射或特定波长红外光)。作用: 近距离避障、人体存在检测(热释电原理PIR)、简单循迹。

    • 麦克风阵列 (Microphone Arrays): 机器人的“耳朵”。作用:

      • 语音识别与人机对话: 实现远场拾音、声源定位(波束形成)、降噪。

      • 环境声音理解: 事件检测(如破碎声、警报)。

      • 音频交互: 播放提示音、音乐或语音合成。

5.3 传感器融合原理(卡尔曼滤波、粒子滤波)——感知的“大脑皮层”

单一传感器通常存在局限(噪声、视野限制、测程短、特定场景失效)。传感器融合通过整合多个异构传感器的数据,利用互补性和冗余性,获取比单一传感器更准确、更鲁棒、更全面的状态估计。

  • 核心目标: 实时状态估计 (State Estimation),例如:

    • 融合 IMU(高频/短时精度好) + 视觉/LiDAR/编码器(绝对/长时精度好) -> 精确姿态 + 位置估计。

    • 融合 RGB图像 + 深度图(RGB-D) + LiDAR -> 稠密语义化的三维场景理解。

    • 融合力传感器 + 视觉 + 编码器 -> 精确估计操作接触点状态和负载。

    • 融合多个麦克风(阵列) -> 声源定位和语音增强。

  • 关键算法:

    • 卡尔曼滤波 (Kalman Filter, KF) 及其变种: 最基础、最广泛应用(尤其动态系统状态估计)

      • 原理: 基于线性动态模型和高斯噪声假设,采用预测-更新循环。预测:根据状态方程和上一时刻状态估计预测当前状态与协方差(表示不确定性)。更新(校正):获取传感器观测值,与预测值比较,利用卡尔曼增益(权衡模型预测和观测的置信度)更新当前最优状态估计和协方差。

      • 优点: 计算效率高、最优线性无偏估计(在模型和噪声统计准确时)。

      • 局限性: 要求系统模型为线性(或近似线性化)且噪声为高斯分布。

      • 变种解决非线性问题:

        • 扩展卡尔曼滤波 (Extended Kalman Filter, EKF): 通过泰勒展开一阶近似对非线性模型/观测进行局部线性化。主流方法。广泛应用于姿态位置估计、基于里程计的定位建图 (Visual/Multi-sensor Odometry)。中国科技工作者在多源融合导航定位技术(如视觉惯性里程计 VIO)中取得重要成果。

        • 无迹卡尔曼滤波 (Unscented Kalman Filter, UKF): 采用“无迹变换”传递状态分布(无需显式计算雅可比矩阵),通常比EKF对非线性处理更优。

    • 粒子滤波 (Particle Filter, PF): 解决强非线性、非高斯问题的强大工具

      • 原理: 序贯蒙特卡洛方法。用一组带权重的“粒子” (Particles) 来近似表示系统状态的概率分布。过程:预测 - 粒子根据状态方程传播并添加过程噪声。更新(重采样) - 用当前观测值计算每个粒子的似然度(权重),并依据权重重要性采样 (Resampling) 生成新的粒子集(权重高的粒子被复制,低的被淘汰)。

      • 优点: 能处理任意复杂非线性和非高斯分布的系统和噪声模型。

      • 缺点: 计算复杂度非常高(粒子数量多时,尤其在高维状态空间)。存在粒子退化(只有少数粒子有显著权重)和样本贫化(重采样后多样性丧失)风险。需精心设计提议分布 (Proposal Distribution)和重采样策略。

      • 应用: 复杂场景(非结构化、动态环境)的全局定位(SLAM)、机器人绑架问题恢复、存在多模型不确定性的人体行为跟踪、基于视觉位姿估计的后优化。常用于计算资源较充裕的场景。

    • 互补滤波 (Complementary Filter): 一种简单高效的频率域融合方法。对高频信息(如IMU陀螺仪积分得到角速度)和低频信息(如加速度计/磁力计估计的姿态角)分别使用高通和低通滤波器,再合并。广泛应用于低端平台的姿态解算(如开源飞控IMU)。

  • 融合层次:

    • 数据级融合: 在原始数据层面进行融合(如图像拼接、点云融合)。信息损失少,但数据量大、要求传感器精确同步和标定。

    • 特征级融合: 提取各传感器数据的特征(如关键点、边缘、轮廓、深度值)再进行融合。降低数据量。

    • 决策级融合: 各传感器独立处理数据并做出局部决策(如“前方有障碍”),然后融合这些决策。容错性高、计算要求低,但信息损失最大。

5.4 传感器噪声处理与鲁棒性设计——感知的“免疫力”

所有传感器输出都不可避免地包含噪声和不确定性。实际环境充满挑战(光照剧变、振动、电磁干扰、遮挡、雾/雨、温度波动)。鲁棒性设计是确保感知系统在严苛条件下可靠工作的关键。

  • 噪声特性:

    • 类型:

      • 电子噪声: 源于传感器电子元件的热噪声、1/f噪声、量化噪声(AD转换)。通常视为高斯白噪声(均值零、方差恒定)。

      • 环境干扰: LiDAR在雾雨散射、视觉在强光/低光/反光下的劣化、超声波的混响。

      • 系统噪声: IMU陀螺仪的零偏(随时间、温度变化)、加速度计的尺度因子误差和非正交误差、编码器振动导致的抖动误差、力矩传感器的温度漂移。

    • 建模重要性: 传感器融合算法(如KF/EKF)高度依赖对过程噪声(系统建模误差)和观测噪声的准确统计建模(方差Q,R)。不准确会导致融合结果偏差甚至发散。

  • 传感器噪声处理技术:

    • 硬件层面:

      • 屏蔽与接地: 严格电磁屏蔽(如传感器金属外壳、线缆屏蔽层)、良好单点接地,抑制电磁干扰(EMI)。

      • 电源滤波: 使用低噪声电源模块,在电源入口和关键IC旁路电容。

      • 信号调理: 硬件滤波(RC低通/带通)滤除高频噪声,运放电路进行阻抗匹配、放大。

    • 软件算法层面:

      • 时间域滤波:

        • 移动平均 (Moving Average): 简单有效抑制高频噪声,但引入滞后。

        • 低通/带通/卡尔曼滤波: 更精确地从噪声中提取有用信息。

      • 频域滤波: 在傅里叶变换域滤波去噪,适合特定噪声模式。

      • 离群点检测 (Outlier Rejection): 通过统计检验(如中值滤波、χ²检验)、模型一致性检查(如RANSAC)排除异常测量值。

      • 传感器标定与补偿: 系统级鲁棒性的基石!

        • 静态标定: 确定传感器的零点、尺度因子、非正交/不正交(如IMU)、安装角度偏差。

        • 动态标定: 确定传感器的频率响应特性。

        • 温度补偿: 为关键传感器(力矩、IMU)建立并应用温度漂移模型。实时温度传感器输入至关重要。

        • 在线标定: 在机器人运行过程中利用冗余信息自适应校正(如视觉辅助IMU零偏估计)。

  • 鲁棒性设计策略:

    • 多源冗余 (Redundancy): 增加多个同类型或功能互补的传感器。一个传感器失效时,系统功能降级但不会完全瘫痪(如双IMU,多个视角的相机)。

    • 传感器选择与部署优化:

      • 针对场景选择: 室内应用视觉LiDAR为主,室外考虑LiDAR抗光能力,水下可能用声呐。

      • 安装位置: 保护关键传感器(IMU),将易损摄像头置于高位,足底/手部空间受限但仍需触觉。

    • 物理防护:

      • 防水防尘: 关键传感器需具备IP防护等级(如IP65/67)。

      • 减振: 对振动敏感传感器(IMU、精密力觉、高清相机)使用橡胶/硅胶减震支架。

      • 防冲击与过载: 机械结构设计保护(如摄像头可缩进保护壳、足底触觉有缓冲层)。

    • 故障检测诊断与降级模式 (Degraded Mode):

      • 持续监控传感器信号完整性、置信度、一致性(如多传感器交叉检查)。

      • 发现严重或持续故障时(如信号消失、输出恒值、数据明显不合逻辑),触发告警并将系统切换到使用剩余传感器运行的安全模式(“跛行回家”能力)。例如:

        • 力传感器故障 -> 仅依赖位置控制和有限电流环估算。

        • 关键相机故障 -> 仅依赖LiDAR进行导航避障。

      • 融合算法中设定合理的一致性门限 (Gating),拒绝与当前状态估计冲突过大的观测(尤其PF/KF类)。


结语

精密而鲁棒的传感系统是人形机器人从“盲目的执行者”蜕变为“机敏的感知者”的核心赋能技术。从肌肉运动的内省(本体感知)到万千世界的解读(环境感知),多维传感器如同机器人的神经网络末梢,将物理信号转化为数字化认知。而多源信息的智能融合(卡尔曼、粒子滤波等)则构成了机器人理解自身与环境协同演化的认知模型基础。在真实世界的恶劣环境中,克服噪声与干扰的鲁棒性设计赋予了传感系统坚韧的生命力。

通过本章解构机器人的“五感”,我们铺设了智能决策的信息基石。接下来,在第六章中,我们将探讨驱动这些感知和行动的能量之源——能源系统,解析人形机器人持续运作的动力续航命脉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值