蓝桥杯.第几个幸运数字(数学_因子)

Question:

Solve:

这个题偏逆向思维,一个数只能被3或者5或者7整除,说明这个数可以且只能拆成一堆3,5,7的乘积,那么我们去枚举所有范围内3,5,7的阶乘能够拼凑出的数,知道它们的个数,答案也就出来了

代码的话,set方法是拿来主义的

这至少是第四次在蓝桥杯遇到因子问题了。

Code:

#include <iostream>
using namespace std;
typedef unsigned long long ll;
int main (void)
{
    //注意初始状态 i3 = i5 = i7 = 1不成立
    ll maxn = 59084709587505, cnt = -1;
    for(ll i3 = 1; i3 <= maxn; i3 *= 3)
    for(ll i5 = 1; i5 <= maxn; i5 *= 5)
    for(ll i7 = 1; i7 <= maxn; i7 *= 7)
      if(i3*i5*i7 <= maxn) cnt++;

    cout <<cnt;
    return 0;
}

set,重点是set_bound(x),set中大于x的第一个元素

#include <iostream>
#include <set>
using namespace std;
typedef unsigned long long ll;
ll maxn = 59084709587505;
set<ll>s;
int a[3] = {3,5,7};
int main(void)
{
    //初始化
	s.insert(3);
	s.insert(5);
	s.insert(7);
	ll temp = 3;
    //死循环
	for( ; ; ){
		for(int i = 0; i < 3; i++){
			ll j = temp*a[i];
			if(j <= maxn)
				s.insert(j);
		}
        //比如3*3,3*5,3*7结束了,接下来应该是5*3,5*5,5*7
        //set的自动排序和非重复性就用到了
		temp = *s.upper_bound(temp);
		if(temp >= maxn) break;
	}
	cout <<s.size();
	return 0;
} 

 这个代码来源于官方解,外加一点小修改

声明:图片均来源于蓝桥杯官网,以个人刷题整理为目的,如若侵权,请联系删除~

### 蓝桥杯 幸运数字 题目 解法 #### 问题描述 蓝桥杯竞赛中的“幸运数字”题目通常涉及特定条件下的数字筛选。例如,在给定范围内找到满足某些性质的数字序列,并确定某个具体值在其序列中的位置。 --- #### 解题思路分析 此类型的题目可以通过枚举、数学推导或者动态规划来解决。以下是具体的解题方法: 1. **定义幸运数字** 根据引用内容[^2],幸运数字是指能够通过某种规则生成的一系列特殊数字。对于本题,“幸运数字”的定义可能基于其因特性或位运算规律。例如,某数字仅由质因子 `3`、`5` 和 `7` 组成,则该数字可视为幸运数字。 2. **暴力穷举法** 使用三重循环遍历所有可能的指组合 `(i, j, k)` 来生成符合条件的数字 \( n = 3^i \times 5^j \times 7^k \),并将其按从小到大顺序排列。这种方法适用于范围较小的情况[^4]。 下面是一个 Python 实现示例: ```python cnt = 0 limit = 59084709587505 result_list = [] for i in range(50): for j in range(50): for k in range(50): num = (3**i) * (5**j) * (7**k) if num <= limit: result_list.append(num) result_list.sort() position = result_list.index(limit) + 1 print(position) ``` 3. **优化算法** 如果据规模较大,可以采用优先队列(堆)的方式逐步扩展候选集合,从而减少不必要的重复计算。这种方式的时间复杂度较低,适合处理大规模输入。 堆实现的核心逻辑如下: - 初始化一个最小堆并将初始值 `1` 插入其中; - 每次取出堆顶元素作为当前最小值,并尝试乘以 `3`, `5`, 或 `7` 后重新加入堆; - 利用哈希表记录已访问过的数字以避免冗余操作。 对应代码片段展示如下: ```python import heapq heap = [1] seen = set([1]) lucky_numbers = [] target = 59084709587505 while True: current = heapq.heappop(heap) lucky_numbers.append(current) if current == target: break factors = [3, 5, 7] for factor in factors: next_num = current * factor if next_num not in seen and next_num <= target: seen.add(next_num) heapq.heappush(heap, next_num) print(len(lucky_numbers)) ``` 4. **其他变种解法** 若题目要求进一步扩展至八进制表示形式或其他约束条件下验证是否为幸运数字,则需额外引入辅助函完成相应检测工作。比如检查整能否被自身八进制表达式的各位数字总和所整除等问题[^3]。 --- #### 总结说明 上述两种主要策略均能有效应对不同版本的“幸运数字”挑战项目需求。实际应用过程中可根据具体情况选取合适的技术手段加以实施。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UmVfX1BvaW50

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值