1.二叉搜索树的概念
二叉搜索树又称为二叉排序树,为什么这么说呢,我们学过就知道,对二叉搜索树进行一遍中序遍历,就会实现排序的功能。二叉搜索树也可以是一个空树,他的性质有如下几点:
- 若它的左子树不为空,则左子树上的结点值都是小于或等于根结点的值。
- 若它的右子树不为空,则右子树上的结点值都是大于或等于根结点的值。
- 它的左右子树也是一个二叉搜索树。
- 二叉搜索树可以支持插入相等的值(如mutiset、mutimap),有的不允许插入相等的值(如set、map),具体使用哪个要看具体场景,后续我们会学到这些容器,他们就像二叉搜索树一下,底层是用红黑树实现的。
上图就是一个二叉搜索树,他的左子树的值都是比根结点小的,而右子树的值都是比根结点大的。
再次,我们用中序遍历遍历一遍这个二叉树,就可以实现一个排序好的递增的顺序。
2.二叉搜索树的性能分析
二叉搜索树最优情况下,其高度为logN(完全二叉树)。
二叉搜索树最差情况下,其高度为N
综合来说,二叉搜索树的增删查的时间复杂度为O(N)
当然,朴素的二叉搜索树在项目中是很少使用的,之后我们会看到他们的变种,如AVL树、红黑树。
Q:为什么要设计二叉搜索树?我们想查找使用二分查找效率不是很高吗?
A:二分查找只支持可以随机访问的结构中,而且需要有序;而且二分查找只能查找,他插入和删除数据效率是很低的。
3.二叉搜索树的接口设计
这里先声明一下,对于二叉搜索树,“改”是没有必要的,而且改完数据再恢复到二叉搜索树很难设计,因此我们只会实现增、删、查
3.1 二叉搜索树的插入
例如,我们还是给如上的例子,我们想插入4怎么实现呢?
- 若树为空,直接新增节点,把它赋值给root
- 若树不空,我们要满足二叉搜索树的性质:左子树 < 根 < 右子树;若我们插入的数大于根结点则往右走,反之往左走,知道走到空位置,插入他。
- 如果是实线满足插入相等值的情况下,既可以往左走,也可以往右走,找到空位置插入。(注意:要满足逻辑的一致性,要是往左就一直往左)
代码实现统一在后面给出。
3.2 二叉搜索树的查找
步骤:
- 从根节点开始查找比较,比根结点值大就往右,反之往左
- 最多查找根的高度次,走到空还是没找到,说明就这值就不存在
- 如果不支持插入相等的值,找到这个值即可
- 如果支持插入相等的值,意味着树中可能存在多个这个值,一般是找到第一个即可(我们一般采取中序遍历的方式找,这样不容易找漏)。
3.3 二叉搜索树的删除
删除的过程最为复杂,首先我们要确定这个值在书中存在不存在,不存在我们直接返回false。
如果该值存在,要删除的节点N有如下四种情况:
- 要删除的节点N左右孩子均为空
- 要删除的节点N左孩子为空,右孩子不为空
- 要删除的节点N左孩子不为空,右孩子为空
- 要删除的节点N左右孩子均不为空。
对于上面四中情况的解决如下:
- 直接free掉N,删除节点N(这种情况可以和2、3一起处理,不用单独处理)
- 把节点N的父亲指向N的右孩子,然后直接删除N
- 把节点N的父亲指向N的左孩子,然后直接删除N
- ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。
3.4 代码实现
#include <iostream>
using namespace std;
//树的结点
template <class T>
struct BSTNode
{
T _key;//值
struct BSTNode* _left;
struct BSTNode* _right;
//构造函数
BSTNode(const T& key)
:_key(key)
,_left(nullptr)
,_right(nullptr)
{}
};
//二叉搜索树
template <class T>
class BSTree
{
typedef struct BSTNode<T> Node;
public:
//插入操作
bool Insert(const T& key)
{
//1.当树为空时
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
//2.树不为空
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else return false;
}
cur = new Node(key);
if (parent->_key > key) parent->_left = cur;
else parent->_right = cur;
return true;
}
//查找操作
bool Find(const T& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key > key) cur = cur->_left;
else if (cur->_key < key) cur = cur->_right;
else return true;
}
return false;
}
//删除操作
bool Erase(const T& key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
//1.cur的左孩子为空
if (cur->_left == nullptr)
{
//【注意】这里必须要判断,防止删除的是根节点
if (parent == nullptr) _root = cur->_right;
else
{
if (parent->_left == cur) parent->_left = cur->_right;
else parent->_right = cur->_right;
}
delete cur;
return true;
}
//2.cur的右孩子为空
else if (cur->_right == nullptr)
{
if (parent == nullptr) _root = cur->_left;
else
{
if (parent->_left == cur) parent->_left = cur->_left;
else parent->_right = cur->_left;
}
delete cur;
return true;
}
//3.cur的左右子树均不为空
//这里面我们采用找右子树的最小节点(左下角)
else
{
Node* rightMinp = cur;
Node* rightMin = cur->_right;
while (rightMin->_left)
{
rightMinp = rightMin;
rightMin = rightMin->_left;
}
cur->_key = rightMin->_key;//替换值
if (rightMinp->_left == rightMin) rightMinp->_left = rightMin->_right;
else rightMinp->_right = rightMin->_right;
delete rightMin;
return true;
}
}
}
return false;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
void _InOrder(Node* root)
{
if (root == nullptr) return;
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
Node* _root = nullptr;
};
int main()
{
BSTree<int> b;
b.Insert(5);
b.Insert(3);
b.Insert(6);
b.Insert(1);
b.Insert(9);
b.Insert(3);
b.InOrder();
b.Erase(3);
b.Erase(9);
b.InOrder();
return 0;
}
};