C++知识整理day11——二叉搜索树(二叉搜索树的插入、查找、删除及完整代码实现)

1.二叉搜索树的概念

二叉搜索树又称为二叉排序树,为什么这么说呢,我们学过就知道,对二叉搜索树进行一遍中序遍历,就会实现排序的功能。二叉搜索树也可以是一个空树,他的性质有如下几点:

  1. 若它的左子树不为空,则左子树上的结点值都是小于或等于根结点的值。
  2. 若它的右子树不为空,则右子树上的结点值都是大于或等于根结点的值。
  3. 它的左右子树也是一个二叉搜索树。
  4. 二叉搜索树可以支持插入相等的值(如mutiset、mutimap),有的不允许插入相等的值(如set、map),具体使用哪个要看具体场景,后续我们会学到这些容器,他们就像二叉搜索树一下,底层是用红黑树实现的。
    在这里插入图片描述
    上图就是一个二叉搜索树,他的左子树的值都是比根结点小的,而右子树的值都是比根结点大的。
    再次,我们用中序遍历遍历一遍这个二叉树,就可以实现一个排序好的递增的顺序。

2.二叉搜索树的性能分析

二叉搜索树最优情况下,其高度为logN(完全二叉树)。
二叉搜索树最差情况下,其高度为N
综合来说,二叉搜索树的增删查的时间复杂度为O(N)
当然,朴素的二叉搜索树在项目中是很少使用的,之后我们会看到他们的变种,如AVL树、红黑树。

Q:为什么要设计二叉搜索树?我们想查找使用二分查找效率不是很高吗?
A:二分查找只支持可以随机访问的结构中,而且需要有序;而且二分查找只能查找,他插入和删除数据效率是很低的。

3.二叉搜索树的接口设计

这里先声明一下,对于二叉搜索树,“改”是没有必要的,而且改完数据再恢复到二叉搜索树很难设计,因此我们只会实现增、删、查

3.1 二叉搜索树的插入

在这里插入图片描述
例如,我们还是给如上的例子,我们想插入4怎么实现呢?

  1. 若树为空,直接新增节点,把它赋值给root
  2. 若树不空,我们要满足二叉搜索树的性质:左子树 < 根 < 右子树;若我们插入的数大于根结点则往右走,反之往左走,知道走到空位置,插入他。
  3. 如果是实线满足插入相等值的情况下,既可以往左走,也可以往右走,找到空位置插入。(注意:要满足逻辑的一致性,要是往左就一直往左)

在这里插入图片描述
代码实现统一在后面给出。

3.2 二叉搜索树的查找

步骤:

  1. 从根节点开始查找比较,比根结点值大就往右,反之往左
  2. 最多查找根的高度次,走到空还是没找到,说明就这值就不存在
  3. 如果不支持插入相等的值,找到这个值即可
  4. 如果支持插入相等的值,意味着树中可能存在多个这个值,一般是找到第一个即可(我们一般采取中序遍历的方式找,这样不容易找漏)。

3.3 二叉搜索树的删除

删除的过程最为复杂,首先我们要确定这个值在书中存在不存在,不存在我们直接返回false。

如果该值存在,要删除的节点N有如下四种情况:

  1. 要删除的节点N左右孩子均为空
  2. 要删除的节点N左孩子为空,右孩子不为空
  3. 要删除的节点N左孩子不为空,右孩子为空
  4. 要删除的节点N左右孩子均不为空。

对于上面四中情况的解决如下:

  1. 直接free掉N,删除节点N(这种情况可以和2、3一起处理,不用单独处理)
    在这里插入图片描述
  2. 把节点N的父亲指向N的右孩子,然后直接删除N
    在这里插入图片描述
  3. 把节点N的父亲指向N的左孩子,然后直接删除N
    在这里插入图片描述
  4. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。
    在这里插入图片描述

3.4 代码实现

#include <iostream>

using namespace std;

//树的结点
template <class T>
struct BSTNode
{
	T _key;//值
	struct BSTNode* _left;
	struct BSTNode* _right;

	//构造函数
	BSTNode(const T& key)
	:_key(key)
	,_left(nullptr)
	,_right(nullptr)
	{}
};

//二叉搜索树
template <class T>
class BSTree
{
	typedef struct BSTNode<T> Node;
public:
	//插入操作
	bool Insert(const T& key)
	{
		//1.当树为空时
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}
		//2.树不为空
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else return false;
		}
		cur = new Node(key);
		if (parent->_key > key) parent->_left = cur;
		else parent->_right = cur;
		return true;
	}
	//查找操作
	bool Find(const T& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key) cur = cur->_left;
			else if (cur->_key < key) cur = cur->_right;
			else return true;
		}
		return false;
	}

	//删除操作
	bool Erase(const T& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				//1.cur的左孩子为空
				if (cur->_left == nullptr)
				{
					//【注意】这里必须要判断,防止删除的是根节点
					if (parent == nullptr) _root = cur->_right;
					else
					{
						if (parent->_left == cur) parent->_left = cur->_right;
						else parent->_right = cur->_right;
					}
					delete cur;
					return true;
				}
				//2.cur的右孩子为空
				else if (cur->_right == nullptr)
				{
					if (parent == nullptr) _root = cur->_left;
					else
					{
						if (parent->_left == cur) parent->_left = cur->_left;
						else parent->_right = cur->_left;
					}
					delete cur;
					return true;
				}
				//3.cur的左右子树均不为空
				//这里面我们采用找右子树的最小节点(左下角)
				else
				{
					Node* rightMinp = cur;
					Node* rightMin = cur->_right;
					while (rightMin->_left)
					{
						rightMinp = rightMin;
						rightMin = rightMin->_left;
					}
					cur->_key = rightMin->_key;//替换值
					if (rightMinp->_left == rightMin) rightMinp->_left = rightMin->_right;
					else rightMinp->_right = rightMin->_right;
					delete rightMin;
					return true;
				}
			}
		}
		return false;
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr) return;
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}
	Node* _root = nullptr;
};

int main()
{
	BSTree<int> b;
	b.Insert(5);
	b.Insert(3);
	b.Insert(6);
	b.Insert(1);
	b.Insert(9);
	b.Insert(3);
	b.InOrder();
	b.Erase(3);
	b.Erase(9);
	b.InOrder();

	return 0;
}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值